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Summary

1.

 

There has been increasing recognition that catastrophes are an important factor in
modelling threatened populations. However, density dependence has generally been
omitted from models of threatened populations on the assumption that this omission
yields conservative predictions. We explore the significance of including density-
dependent catastrophes in models of threatened populations.

 

2.

 

Using an analytical model, we show that density-dependent catastrophes have a sig-
nificant effect on population persistence, decreasing mean persistence time at large
population sizes and causing a relative increase at intermediate sizes.

 

3.

 

We illustrate our results with empirical data from a disease outbreak in crabeater
seals 

 

Lobodon carcinophagus

 

 and show that intermediate population sizes have the longest
predicted persistence times.

 

4.

 

The pattern we found is qualitatively different from previous results on persistence
time based on density-independent models, in which persistence time increases with
population size to an asymptote.

 

5.

 

Synthesis and applications

 

. This study has important implications for the conserva-
tion of species that may experience density-dependent catastrophes, such as disease out-
breaks or starvation. Our results indicate that small and intermediate sized populations
may contribute disproportionately to species persistence. Thus populations that have
been dismissed as ‘marginal’ may actually be important for conservation. In addition,
culling may increase the persistence of populations that experience density-dependent
catastrophes.
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Introduction

 

Predicting persistence times and extinction rates for
threatened populations is a central focus in conserva-
tion biology and has been one of the main tools for
making important species and habitat management
decisions (Boyce 1992; Burgman, Ferson & Akcakaya
1993; Beissinger & Westphal 1998; Reed 

 

et al

 

. 2002).
Early studies used simple exponential growth models
with variation in the birth or death rates due to varying
environmental conditions (Goodman 1987; MacArthur
& Wilson 1967). These initial investigations predicted
that persistence time increased very rapidly with popu-

lation size, reaching exceedingly long periods once a
population reached a relatively small size (Shaffer 1987).
These results stimulated interest in the effect of infre-
quent, large increases in death rates, or ‘catastrophes’,
on persistence times (Ewens 

 

et al

 

. 1987). Mathematical
work on similar problems concerning extinction
and loss of alleles due to extreme mortality events or
emigration was also in progress, although it was not gen-
erally applied directly to endangered species (Brockwell,
Gani & Resnick 1982; Brockwell 1985; Ewens 1989).
Catastrophes can cause large decreases in mean persist-
ence time, which can be described as a power function
of  the population ceiling (Lande 1993). Depending
on the relative size of the catastrophes and the popula-
tion growth rate, persistence times can either increase
at an increasing or a decreasing rate with the popula-
tion ceiling (Lande 1993; Mangel & Tier 1993). These

 

Correspondence: Chris Wilcox. Tel.: 

 

+

 

61 7 3365 1686. Fax:

 

+

 

61 7 3365 1655. E-mail: c.wilcox@uq.edu.au.



 

860

 

C. Wilcox & 
B. Elderd

 

© 2003 British 
Ecological Society, 

 

Journal of Applied 
Ecology

 

, 

 

40

 

,
859–871

 

results have led to widespread recommendations to
increase the population sizes deemed necessary to
maximize persistence (Mace & Lande 1991; Mangel &
Tier 1993; Meffe & Carroll 1994).

However, these general results are based on a simple
treatment of  catastrophes. In fact, a lack of  attention
to the effects of  catastrophic mortality has been cited
as one of  the primary weakness of  models of  declin-
ing species (Coulson 

 

et al

 

. 2001). Catastrophes are
generally included in these models as either extreme
variation in vital rates, driven by environmental stocha-
sticity, or as mortality events occurring at random
intervals that remove a large portion of the population
(e.g. Lande 1993; Doak, Kareiva & Klepetka 1994;
Marmontel, Humphrey & Oshea 1997). Empirical evid-
ence suggests that these representations are too simple.
Catastrophes are often more complex, and in particular
may be caused by factors that have density-dependent
feedbacks. The two factors identified by Young (1994)
as the most common causes of massive die-offs, or
catastrophes, in his review of large mammal die-offs
were disease and starvation, both of which are likely to
be density-dependent. Inclusion of density dependence in
catastrophic mortality may radically change the extinc-
tion time predictions made by population models.

Density dependence has often been ignored in models
of extinction risk (e.g. Inchausti & Weimerskirch 2001),
based on some early modelling results demonstrat-
ing that this was a conservative assumption relat-
ive to extinction risk (Ginzburg, Ferson & Akcakaya
1990). However, recent results using a very well under-
stood population of feral sheep have shown that extinc-
tion risk is quite sensitive to density dependence, at
least for density dependence in the population growth
rate (Chapman 

 

et al

 

. 2001). Thus, it is unclear whether
ignoring density dependence is a conservative assump-
tion, and it probably depends on the particular system
in question. To determine if  density-dependent cata-
strophes were included in population models when
appropriate, we searched for papers on the viability of
species that had potentially density-dependent cata-
strophes in Young’s (1994) review. While the importance
of including density dependence may seem an obvious
point, only one of the population viability analyses we

examined modelled catastrophes in this way and even
this analysis did not examine its influence directly
(Table 1). In fact, several analyses modelled factors
that are likely to be density-dependent, such as disease
mortality, as density-independent (e.g. Marmontel

 

et al

 

. 1997). This contradicts empirical evidence that
both disease transmission and mortality are density-
dependent in some wildlife populations (Hochachka &
Dhondt 2000).

In light of their prevalence in natural systems and the
potential effect on extinction risk, it is important to
examine the impact that density-dependent catastrophes
have on persistence time. Understanding the role that
density-dependent catastrophes may play is especially
pressing, given that they may qualitatively change the
results of models that are often used to make decisions
among management alternatives.

Catastrophes have two general characteristics: prob-
ability and intensity. The probability of a catastrophe is
the chance that it will occur in an interval of time, for
instance the chance of an extreme drought or a pest
outbreak in a given year. Independently, one can also
characterize the intensity of the catastrophe, for exam-
ple how much does the 50-year drought increase the per
capita death rate over the average rate. Each of the two
parameters, probability of occurrence and intensity,
can either be density-dependent or density-independent.
This gives four possible ways for catastrophes to enter
into population dynamics.

It is not difficult to imagine real examples of  each
of these types of feedback in natural systems. For
instance, coastal dune systems in the south-eastern
USA are heavily impacted by hurricanes, and small
mammal populations in this habitat decline precipi-
tously the year after hurricanes due to starvation
(Swilling 

 

et al

 

. 1998). While the probability of a catas-
trophe, i.e. a hurricane, in this case is density-independent,
the resulting population declines due to starvation are
probably density-dependent phenomena.

Disease outbreaks may provide an example of
catastrophic events that are density-dependent in both
their probability and intensity. For instance, the rate of
spread of 

 

Mycoplasma gallisepticum

 

, a poultry pathogen,
among house finch 

 

Carpodacus mexicanus

 

 populations

 

Table 1.

 

Catastrophes in population models for species where there is evidence for density dependence based on Young (1994)

 

 

 

 

Authors Species Population model 
Included 
catastrophes Source

Density 
dependent 
in model 

Evidence 
for density 
dependence

Kokko, Lindstrom & Ranta (1997) Seals Difference equation, No Not applicable Not applicable Yes
 matrix

Song (1996) Deer Matrix Yes Drought (starvation) No Yes
Swart, Lawes & Perrin (1993) Monkey Differential equations Yes Not specified No Yes
Caughley & Gunn (1993) Kangaroo Difference equations Yes Drought (starvation) No Yes
Pascual, Kareiva & Hilborn (1997) Wildebeest Matrix, nonlinear Yes Drought (starvation) Yes Yes

difference equations
Pascual & Hilborn (1995) Wildebeest Difference equation Yes Drought (starvation) Yes Yes
Armbruster & Lande (1993) Elephant Leslie matrix Yes Drought (starvation) No Yes
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throughout the eastern USA depends on density, with
larger populations experiencing the epizootic earlier
during its regional spread (Hochachka & Dhondt
2000). In addition to density-dependent transmission,
the size of the declines suffered by the infected house
finch populations also depends on density, with larger
populations suffering greater mortality (Hochachka
& Dhondt 2000). Another case study comes from a
disease outbreak that produced very high mortality
in a group of nine subpopulations of crabeater seals

 

Lobodon carcinophagus

 

 wintering on the ice in the
Crown Prince Gustav Channel in Antarctica. In this
case the probability of the disease outbreak appears to
be strongly density-dependent, but the intensity less so.

Past work on catastrophes has usually assumed density-
independence for both probability and intensity. We
first investigate how predictions for mean persistence
time change when catastrophe probability is density-
dependent and intensity is independent, and then how
predictions change when both are density-dependent.
Initially, we explore these patterns in a general model.
We then illustrate these ideas using demographic data
on crabeater seals.

 

Methods

 

 

 

To develop a model of density-dependent catastrophes
we expanded upon a birth and death process model
developed by MacArthur & Wilson (1967) and later
modified to include catastrophes by Mangel & Tier
(1993). Taylor & Karlin (1998) present an introduction
to these methods. We assume a minimum size at which
the population is extinct (the critical population size)
and known values for the maximum population size,
carrying capacity, and birth and death rates. Then the
mean time to drop to the critical population size from
any population size 

 

x

 

, assuming the population
changes by at most one individual per time step, is:
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Here 

 

B

 

(

 

x

 

) is the instantaneous birth rate at population
size 

 

x

 

, 

 

D

 

(

 

x

 

) is the instantaneous death rate at size 

 

x

 

.
This equation can be written simultaneously for all
population sizes as a vector of 

 

T

 

(

 

x

 

)’s and a matrix,
called the infinitesimal generator, containing the 

 

B

 

(

 

x

 

)’s
and 

 

D

 

(

 

x

 

)’s (Taylor & Karlin 1998). If  

 

T

 

 is the vector of
mean persistence times for populations from the mini-
mum size to the carrying capacity and 

 

M

 

 is the matrix of
population size specific birth and death rates, Mangel
& Tier (1993) show that

 

T

 

 

 

= −

 

1M

 

−

 

1

 

. eqn 2

This is an analytical method for calculating mean
persistence times that can accommodate very complex

dynamics, including density-dependence (Mangel &
Tier 1993). In most cases the matrix inversion will have to
be done numerically, and there are many software pack-
ages available that can perform this operation. We used
True BASIC™ (http://www.truebasic.com), a modern
structured programming language which is interpreted
into C, running on a Macintosh G3 computer.

Mangel & Tier (1993) extend this basic model to
include a two part process for catastrophes, composed
of the rate of occurrence for catastrophes at a given
population size (size is interchangeable with density
because the model assumes a constant habitat area)
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), and the intensity of the catastrophes. Given that
a catastrophe occurs, we define intensity, 
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eqn 3

where 

 

Q
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|

 

 x

 

) must sum to one over all possible catas-
trophe sizes:

eqn 4

We depart from Mangel & Tier (1993) in ignoring
catastrophes with no deaths, 

 

Q

 

(0 

 

|

 

 x

 

), and ones that are
analogous to the individual death term, 

 

Q

 

(1 

 

|

 

 x

 

). This
modification yields a matrix of population size specific
rates similar to eqn 2, with the addition of catastrophe
probabilities in the subdiagonal:

eqn 5

Where 
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) is the catastrophe rate at size 

 

x

 

, 
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 is the
population size below which extinction occurs, and
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is the rate of change in population size at 

 

x

 

. This matrix
be inverted as above in eqn 2 to yield a vector of mean
persistence times for all population sizes.

In order to investigate the effect of density-dependence
in catastrophe probability, we chose a function for the
catastrophe rate that would be flexible but would main-
tain a sigmoidal shape. We defined the catastrophe rate as:

eqn 7
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Here the rate of  density-independent catastrophes
is 

 

ω

 

0

 

. The rate of  density-dependent catastrophes is

, where 

 

x

 

 is the current population size, 

 

x

 

th

 

is the size at which the rate is , and 

 

Γ

 

 is a parameter
allowing modification of the strength of the density-
dependence (Fig. 1). We chose this particular func-
tional form for three reasons: (i) it agrees with the
conclusion that disease outbreaks in wildlife popula-
tions generally occur when the population exceeds a
threshold value (Dobson & Hudson 1995); (ii) it matches
the observed pattern in the empirical data from cra-
beater seals that we use; and (iii) it is a relatively simple
form that requires few parameters and thus is straight-
forward to analyse. In discussing density-dependent
catastrophes we will use 

 

ω

 

1

 

, the maximum rate, to refer
to a particular catastrophe rate. The actual values for

 

C

 

(

 

x

 

) will be much less for most population sizes, with
its value reaching 

 

ω

 

1

 

 only near the maximum popula-
tion size.

In the paper we will generally discuss catastrophe
frequency as a probability instead of a rate for clarity,
therefore we show the method for conversion from
rates. This is also a necessary step for simulations, as
although the rates can be represented directly as
probabilities (B(x)∆t + o(x)∆t), these are not bounded
by 1 when ∆t is very close to 0 (Hilborn & Mangel
1997; p. 69). A change in population size occurs with
probability:

eqn 8

The probability of a particular type of change, e.g. a
birth, is the product of  the probability of  a change
(eqn 8) times the relative probability of the type of
change of interest (a birth):

eqn 9

Analogously, death and catastrophe rates can be con-
verted to probabilities by replacing the birth rate in the
numerator of the last term in eqn 9 with appropriate
rate.

We modelled the intensity of catastrophes as either a
uniform or binomially distributed decrease in popu-
lation size (Fig. 2). For the uniform distribution, if  a
catastrophe occurs, all population sizes two or more
less than the current size are equally likely outcomes.
Although we use this as a density-independent case,
the population size will have some effect on the size of
the catastrophe. On average, the population after a
catastrophe will be approximately half  of the original
population. We use the uniform distribution as our
density-independent case for three reasons: (i) if  the
size of a catastrophe were wholly density-independent,
i.e. a set value, it would either devastate the popula-
tions at small population sizes or be trivial at large
sizes; (ii) it is a common distribution used in many popu-
lation viability models; and (iii) in comparison with the
binomial model the effect of uniformly distributed
catastrophes is much less dependent on density. For the
binomial model we assume all individuals are equally
likely to die in a catastrophe with probability 1 − p. The
most likely reduction in the population size is (1 − p)
(x − 2), where x is the precatastrophe population
size (Fig. 2). Resulting populations will be concen-
trated near px rather than distributed across the range
of values; thus population reductions due to binomial
catastrophes are more sensitive to the pre-catastrophe
population size. Although it would be possible to make
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Fig. 1. Functional forms used for the density-dependent proba-
bility of catastrophe in the model. The curves represent different
onsets of the probability of catastrophes, driven by values of Γ.
From top to bottom the values for Γ in the figure are: a = 60, b =
30, c = 15, and d = 7·5. The density-dependent probability function 
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Fig. 2. Catastrophe intensity probability distributions. These
are the probability mass functions for the number of
individuals dying if  a catastrophe occurs. The distributions
shown are for populations starting at an initial size of 100
individuals. The flat line is a uniform distribution, indicating
a density-independent intensity. The humped function is a
binomial with parameters Pr{survival} = 0·25 and n = 98,
indicating a density-dependent intensity. Note that the graph
only goes to 98, because for a population with a population
ceiling of 100 we only allowed catastrophes that caused a
decline of  2 or more individuals, resulting in a maximum
of 98.
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the intensity of catastrophes more strictly density-
dependent by allowing the survival probability to
depend on density, we chose to avoid this complication
to maintain comparability with the empirical example
we use.

It is important to note that our model does not
include environmental stochasticity, otherwise known
as process error (Hilborn & Mangel 1997). To incorpor-
ate process error in a model one needs to deal with the
variation in demographic rates over time, and ideally
incorporate not only their variance, but also the covari-
ance among rates. This is a complex, but solvable prob-
lem for demographic simulation models (e.g. Doak
et al. 1994). However, incorporating process error into
the type of birth-death process model we use is difficult.
The primary problem is that it would be necessary to
take the expectation of the inverse of the matrix of
birth, death, and catastrophe rates, M, across the joint
distribution of the demographic rates:

T = Eε[−1M−1(b(ε),d(ε), c(ε))] eqn 10

Where ε denotes the process error in the birth (b), death
(d ) and catastrophe rates (c). It is important to be clear,
introducing process error does not alter the funda-
mental underlying process – the population still changes
by only single births or deaths and catastrophes – the
values in the inverse matrix are now just an expectation
across the variation in each rate.

An alternative approach for calculating equation 10
would be to discretize the joint distribution of  the
birth and death rates, calculate M for each possible
joint realization of the rates, invert each M, and then
take the expectation across these inverted matrices.
We performed this discretized analysis assuming a
symmetric beta distribution for additive process error
in either the birth rate or the death rate, holding the
other rate constant, to evaluate the effects of environ-
mental stochasticity on our model results. We varied
each rate in steps of 5% from −100% to +100%, yielding
20 possible realizations for either the birth or death
rate. We explored the effects of this additive process
error as the variance in error distribution increased
up to a maximum of 0·4. To illustrate the range of this
variance, at the maximum error variance of 0·4 there
was a 5% chance that the observed rate would differ
by 75% or more from the mean rate in any given
observation.

Incorporating process error into the birth, death,
and catastrophe model we used resulted in quantitative
changes in our results, primarily reducing the per-
sistence of small and intermediate sized populations.
However, while there were quantitative effects, the
qualitative results of our model did not change, and
thus we chose to exclude environmental stochasticity
from our analysis. It is important to note that the time
required for calculating the expectation of the inverse
matrices can be prohibitive if  the number of realiza-
tions of the process error is very large.

 

Basic demographic rates

We chose parameters based on a hypothetical species
that has one offspring per individual per year in a popu-
lation with annual population growth rates λ = 1.01
or λ = 1.05. We chose λ values slightly above 1 as an
optimistic, but realistic conservation case. We used
a birth rate of 1 per year to match our empirical exam-
ple and for ease of calculation. We calculated the death
rate for the species using the population growth rate
and birth rate (Appendix 1). We followed the basic
MacArthur & Wilson (1967) model formulation, hold-
ing these rates constant below the population ceiling,
set at 100, above which B(x) = 0 .

Catastrophe probability

We chose a range of catastrophe parameters to cover
the spread of possible values. It is important to remem-
ber that these are maximum rates, and in the density-
dependent case the rates will be substantially below
the maximum for a portion of the range of possible
population sizes. The maximum probability of cata-
strophe varied from 0·006 to 0·902. This is equivalent to
maximum catastrophe rates between 1 every 100 and 1
every 0·1 years. We used a range of ω1 values (seven)
that allowed us to explore the effect of different inten-
sities of  density dependence, without departing from
a basic sigmoidal shape that gave a maximum cata-
strophe probability of approximately ω1. The value for
xth was 75 in all of the analyses. In preliminary analyses,
altering xth had no effect on the qualitative patterns
we found, thus we fixed it at this value arbitrarily. We
analysed the model for each of the catastrophe rates as
a density-independent rate (ω0 > 0, ω1 = 0), as a density-
dependent rate (ω0 = 0, ω1 > 0) and for a selected set of
combined rates (ω0 > 0, ω1 > 0). The combined density-
independent and density-dependent case did not differ
qualitatively from the density-dependent case, so we
will not discuss these results in detail.

Catastrophe intensity

The intensity of catastrophes was constant for the uni-
form distribution model, with the average mortality
being half  of  the current population size, and the
populations remaining after catastrophes evenly dis-
tributed between the pre-catastrophe population size
and zero. For the binomial model we used survival
probabilities of 0·5, 0·25 or 0·1.

Crabeater seals Lobodon carcinophagus

In addition to these hypothetical cases, we also exam-
ined the effect of density-dependent catastrophic mor-
tality on persistence time using field data for crabeater
seals. We explore this case to illustrate our results using
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field data, with the clear recognition that we do not
have adequate data to fully characterize the popula-
tion dynamics of this species. However, in collecting
these data we discovered that there is an amazing lack
of similar data on die-offs, even for relatively well-studied
large mammals, making stronger empirical tests of our
results difficult.

In 1956, nine subpopulations of  crabeater seals
wintering on the ice in the Crown Prince Gustav Channel,
off  Graham Island in Antarctica, experienced mass
die-offs due to an outbreak of disease (Laws & Taylor
1957). We used the data from Laws & Taylor (1957) on
these subpopulations to parameterize our model. The
nine populations ranged in size from 50 to 2000 ani-
mals. Based on these data we set the population ceiling
at 2000, and assumed an annual population growth
rate λ = 1·01 or 1·05 for populations below that size.
Birth rates were set at 0·5 offspring per year per female,
and death rate was determined from this and the
population growth rate. Empirical estimates of disease
mortality across the subpopulations varied from 0%
to 97%, with most populations below 400 individuals
experiencing negligible disease mortality. Above 400
individuals mortality rates increased rapidly. Based
on this we set the threshold for disease outbreaks (xth)
at 400 individuals. There was no significant trend in
per capita mortality with population size above 400
individuals, so we used Laws & Taylor’s (1957) mean
mortality rate of 85% to estimate the individual survival
probability. Thus, we assume catastrophe intensity is
binomially distributed, and each seal in a population
has a survival probability of 0·15, if  a catastrophe
occurs. We set Γ = 30 to give a relatively rapid onset
for disease outbreaks at population sizes above 400
individuals. We were unable to find data on the fre-
quency or probability of disease outbreaks in crabeater
seals, so we estimated it based on data from harbour
seals Phoca vitulina using maximum likelihood methods
(Geraci et al. 1982; Appendix 2). Due to the suggested
prevalence of disease outbreaks in seal populations
and the similarity of life histories among seals, this
should be a reasonable first approximation (Young
1994). The most likely estimate for the catastrophe rate
was C(x) = 0·05 or 1 outbreak every 20 years on average,
and the upper 95% confidence limit was C (x) = 0·115
or an outbreak every 9 years (Appendix 2). We ran the
model using both the maximum likelihood estimate
and the value at the upper confidence limit.

Results

      
   

Density dependence in the probability of catastrophes
has a large effect on the pattern of  population per-
sistence time with increasing initial population size
(Fig. 3). This effect is particularly apparent in compar-
ison with the pattern generated by density-independent

catastrophe probabilities (Fig. 3). Three qualitative
differences in the patterns are important. First, density-
dependent catastrophes generate a local maximum in
persistence times at small initial population sizes. Sec-
ondly, persistence times for populations with a given
density-dependent catastrophe probability are equival-
ent to identical populations with much smaller density-
independent probabilities. Thirdly, persistence times rise
more rapidly at small population sizes in the density-
dependent case. All of these patterns are driven by the
lack of catastrophes in the density-dependent case at
small population sizes and the rapid increase in their
frequency at larger sizes. Simultaneously including
density-independent and dependent catastrophes in
the model did not qualitatively change this pattern
from the density-dependent catastrophes case, thus we
will not present results for cases with both types of
catastrophes.

The probability of  catastrophe has a large effect
on population persistence time (Fig. 4). If  density-
dependent catastrophes are relatively rare, with a
maximum rate around 1 every 100 years (ω1 = 0·01),
they effect persistence time, but there is not a major
qualitative difference between the patterns in the
density-dependent and density-independent cases, i.e.
both rise nearly monotonically toward an asymptote
(Fig. 4a, top curve, Fig. 3). However, as the probability
of catastrophes increases, persistence time for a given
initial population size decreases rapidly (Figs 4b and
5). At these shorter persistence times the effect of den-
sity dependence in the probability of a catastrophe
becomes apparent, and results in a depression in per-
sistence time for populations initially near or above xth,
the threshold for density dependence (Figs 4b and 5).
Comparing maximum persistence time and persistence
time at the population ceiling, these depressions ranged
up to 16% when λ = 1·05, and 21% when λ = 1·01

Fig. 3. Persistence time for populations with density-
dependent (DD) and density-independent (DI) catastrophe
probabilities. The intensity of catastrophes for both curves is
density-independent. The probability of catastrophe for the
density-independent case is 0·025 and the maximum probab-
ility for the density-dependent case is 1(i.e. ω0 and ω1, respect-
ively). The population growth rate for both curves is λ = 1·01,
and xth = 75 and Γ = 15 for the density-dependent case. The
population ceiling for both cases is 100 individuals.
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(Figs 4b and 5, respectively). This effect is apparent
even at relatively low maximum catastrophe probab-
ilities, e.g. P ≅ 0·06 (Fig. 5). In fact, additional incre-
mental increases in the maximum catastrophe probability
have diminishing effects on persistence time beyond
this initial pattern (Fig. 5).

      


As Γ (the parameter that controls the steepness of the
density dependence function) increases, the effect of
catastrophes becomes more pronounced (Fig. 6). As

Fig. 4. Persistence time for high growth rate populations with a density-dependent probability of catastrophic mortality. The
intensity of catastrophes is density-independent (i.e. mortality is uniformly distributed). Each line represents a different
probability of catastrophe. Panel (a) shows the results for all the analyses we conducted; panel (b) is the same, but does not include
the lowest probability run. The probabilities shown in the figure have been rounded for brevity, the actual values, from top to
bottom, are: 0·007, 0·059, 0·425, 0·684, 0·824 and 0·905. These correspond to average rates of: 1 catastrophe every 100 years, 1
every 10 years, 1 every year, 1 every 0·4 years, 1 every 0·2 years and 1 every 0·1 years, respectively. For these analyses the growth
rate λ = 1·05, xth = 75, and Γ = 15.

Fig. 5. Persistence time for low growth rate populations with a density-dependent probability of catastrophic mortality. The
intensity of catastrophes is density-independent (i.e. mortality is uniformly distributed). Each line represents a different
probability of catastrophe. The probabilities shown in the figure have been rounded for brevity, the actual values, from top to
bottom, are: 0·006, 0·058, 0·419, 0·677, 0·819 and 0·902. These correspond to average rates of: 1 catastrophe every 100 years, 1
every 10 years, 1 every 1 years, 1 every 0·4 years, 1 every 0·2 years and 1 every 0·1 years, respectively. Γ = 15 and xth = 75. The
growth rate for these runs was λ = 1·01.
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the density dependence function becomes more step-
like, the peak in persistence time at lower population
sizes becomes sharper and longer relative to the subse-
quent trough (Fig. 6). The population size with the
maximum persistence time also changes. For instance,
comparing populations with a maximum catastrophe
probability of approximately 0·4, the population with
maximum persistence time moves from 32% of the
population ceiling to 43% as the onset of density
dependence becomes more abrupt (Fig. 6).

  - 
   

When catastrophe intensity increases with density (i.e.
is binomially distributed), there is a pronounced effect
on persistence time (Fig. 7). The local maximum in
persistence time at low population sizes is sharper and
higher relative to the population ceiling relative to the
density-independent intensity case (compare Figs 7

and 6, third curve from the top). As the intensity of the
catastrophes increases, the differential in persistence
time at intermediate population sizes becomes more
pronounced. For instance, if  the maximum probability
of a catastrophe occurring is approximately 0·4 and the
individual survival probability is 0·5 when one occurs,
the predicted maximum persistence time is 5% longer
than the persistence time at the population ceiling
(Fig. 7, top curve). In contrast, if  P = 0·1, the predicted
maximum is nearly twice the persistence time at the
ceiling (Fig. 7, bottom curve). In addition, the range of
population sizes that have persistence times close to the
maximum is also more narrow for populations with
more intense catastrophes (Fig. 7). Finally, if  catastro-
phes are very intense there may be some intermediate
population sizes that have particularly short persist-
ence times (Fig. 7, bottom curve). This is driven by the
catastrophe probability reaching its maximum below
the population ceiling and causing populations to make
sojourns into small sizes where they are susceptible

Fig. 6. Persistence times for a population with differentially sharp onsets of density-dependence in catastrophic mortality. Γ = 60,
30, 15, and 7·5, moving from top to bottom. These equate to a step function, a sharp sigmoidal curve, a smooth sigmoidal curve,
and, a more gentle sigmoidal curve, respectively (see Fig. 1). These times were generated from a model with density-independent
catastrophe intensity, a low growth rate (λ = 1·01), xth = 75, and a maximum probability of catastrophe of 0·677.

Fig. 7. Persistence times for a population with density-dependent probability and intensity of catastrophes. Each line represents
a different intensity of catastrophe (equivalent to the probability an individual survives). From top to bottom the intensities are
0·5, 0·25, and 0·1. This model used the low growth rate (λ = 1·01) and a maximum catastrophe probability of 0·419. The density-
dependence parameter, gamma, was 15 and xth = 75.
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to extinction due to demographic stochasticity. As the
initial size increases further above xth, the proportional
reductions in population size due to catastrophes no
longer take the population to sizes that are susceptible
to extinction via demographic stochasticity.

     


Using the density-dependent probability and intensity
model, i.e. assuming that all seals in a population have
an equal chance of contracting a disease and dying, we
found a strong effect of catastrophic mortality on seal
persistence times (Fig. 8). We investigated persistence
times at two different arbitrary population growth
rates (λ = 1·01 and 1·05) and two catastrophe prob-
abilities (P = 0·05 and 0·115) which were estimated from
empirical data. Higher growth rates led to a decreased
effect of density-dependent catastrophes on persist-
ence time (Fig. 8a). Although there was still an effect, it
was negligible when scaled against the mean time to
extinction (Fig. 8a). Populations with the lower growth
rate showed a strong effect of density dependence in

catastrophe probability and intensity (Fig. 8b). Persist-
ence times reached a local maximum at 147 individuals
for the lower catastrophe probability, and 137 for the
higher (Fig. 8b). In both cases, the predicted persistence
times declined to a local minimum above this size, which
was centred just below the threshold population size for
catastrophes. Persistence times then rose as the initial
population size increased toward the population ceiling.
For example, the higher catastrophe probability case
had an initial peak in persistence time of 416 years at
137 individuals, which declined to a local minimum of
326 years at 398 individuals, and finally rose to 423 years
at the population ceiling (Fig. 8b). The probability of
catastrophe had an effect on the predicted persistence
times, giving reduced persistence times with more frequent
catastrophes (Fig. 8a,b). However, there was no qual-
itative difference in the pattern of persistence across
population size as the catasrophe frequency increased.

Discussion

Our results demonstrate that the way catastrophes are
incorporated into population viability analysis (PVA)

Fig. 8. Persistence times for crabeater seal populations with catastrophes, in which probability and intensity are density-
dependent. Panel (a) a population with an annual per capita growth rate of 1·05; (b) one with a growth rate of 1·01. Parameters
for the model are given in the methods. The top line in each figure is the persistence time using the maximum likelihood estimate
of the maximum probability of catastrophe for the seals (P = 0·05, or every 20 years on average), the bottom line is the results using
the upper 95% confidence boundary of the estimate as the maximum probability of catastrophe (P = 0·115 or every 9 years on
average). Catastrophe rates are based on data from Laws & Taylor (1957).
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models can make a significant difference in the predic-
tions they give for persistence times. Most importantly,
density dependence in the probability or intensity of
catastrophes can produce qualitatively different out-
comes when examining the effect of initial population
size on mean persistence time. Given that population
size and density are related, either due to aggregation
by individuals or limited habitat, positive density
dependence in the probability of catastrophes may
make larger populations more vulnerable to extinction.
Positive density dependence in the intensity of catas-
trophes also has a strong effect on persistence times,
causing reductions at large population sizes. Together,
these two factors can generate mean persistence times
for large population sizes that are substantially smaller
than times expected for smaller population sizes. There
are a very limited number of species for which there is
adequate field data to test the generality of this pattern.
However, predictions based on data from disease out-
breaks in crabeater seal populations indicate that real
populations may follow this pattern, with greatly
reduced mean persistence times at intermediate popu-
lation sizes.

Our results have a number of implications. First, if
density-dependent catastrophes are a significant factor
in regulating populations, a population may persist
longer if  it is kept at a lower density. It is important to
keep in mind however, that other factors such as envir-
onmental stochasticity may pose a significant threat,
particularly at small and intermediate population sizes.
Secondly, there may be a narrow range of population
sizes, well below the population ceiling, for which
populations tend to persist the longest. Thirdly, due
to the more rapid rise in persistence time, very small
populations affected by density-dependent catastrophes
may persist longer than similar populations affected by
density-independent ones.

Data from a survey of large mammals indicate that
mechanisms which could cause density-dependent
catastrophes, such as disease or starvation, may actu-
ally be relatively common (Young 1994). Moreover,
empirical estimates of catastrophic mortality among
large mammals suggest mean survival probabilities
ranging from 0·10 to 0·20, within the range of  values
we examined (Young 1994). These data suggest that
density-dependent catastrophes may be important forces
in the population dynamics of many threatened species.
This is particularly true for organisms that are likely to
experience positively density-dependent catastrophes,
as in fire susceptible systems such as chaparral or for
any species affected by starvation or epidemic disease
outbreaks.

One important point to note in evaluating our
results is that our model does not include environ-
mental stochasticity. Inclusion of environmental stochas-
ticity, or process error, in a model of extinction that
includes both demographic stochasticity, or sampling
error, and catastrophes in an analytic framework has
been elusive. Many simulation models have included all

three types of stochasticity; however, their results have
generally been specific to a particular system and not
intended to explore the relative importance of these
factors in persistence (see References in Table 1). Our
preliminary analysis indicated that incorporating proc-
ess error would decrease the strength of the patterns we
have shown; however, it would not change them qual-
itatively. The primary effect of process error appears to
be in reducing the persistence of small populations,
although they did still have longer mean times to
extinction than larger populations for some parameter
combinations. Clearly, conclusive results on the rela-
tive effects of environmental stochasticity and density-
dependent catastrophes will require further development
of the analytical tools available for modelling these
types of systems.

There is an ongoing argument in the literature as to
whether catastrophes and environmental stochasticity
should be considered as separate phenomena in extinc-
tion processes, or whether catastrophes really represent
an extreme case of environmental stochasticity, or
process error (e.g. Lande 1993; Caughley 1994; Young
1994, 1999; Erb & Boyce 1999; Reed et al. 2002). In
part this issue seems to be a result of the definition of
catastrophes from the perspective of their effects, not
the underlying mechanisms (e.g. Young 1994). This has
lead to the question of whether they are statistically
separable from smaller variations in population size or
growth rate that are presumably caused by ‘normal’
process error, or environmental stochasticity (e.g. Erb
& Boyce 1999).

A more fruitful approach might be to define
catastrophes and environmental stochasticity by the
characteristics of their underlying mechanisms. For
instance, in the case of the critically endangered Ala-
bama beach mouse Peromyscus polionotus ammobates
annual changes in population size are driven by sum-
mer rainfall which affects the seed crop on which they
feed. These mice inhabit frontal dunes along the coast
of the south-eastern US, and as such their habitat is
subject to impacts from hurricanes moving up through
the Gulf of Mexico (Swilling et al. 1998). These hurri-
canes have a variety of effects, including permanent
and temporary damage to the beach substrate, flood-
ing resulting in direct mortality and necessitating dis-
persal to protected areas, and destruction of the annual
seed crop. Thus annual process error, or environmental
stochasticity, could be equated with summer rainfall,
while hurricane effects represent catastrophic events.
In this case it is unclear which mechanism might result
in larger magnitude changes in population size. The
primary difference between the two sources of vari-
ation in population is their recurrence interval, not the
magnitude of their effects (Swilling et al. 1998; Oli,
Holler & Wooten 2001). The process error, or environ-
mental stochasticity, is introduced every summer, while
the catastrophes occur at random intervals.

One would model these two sources of population
variation quite differently, and would generate
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expectations for their magnitude and frequency using
entirely separate data sets. This represents a much
more nuanced view of environmental stochasticity and
catastrophes, and potentially presents a resolution to
the debate about how to separate the two sources of
variation. The model we developed follows this frame-
work, although we have chosen not to include environ-
mental stochasticity in the version we present here.

 

Our results have several ramifications for conservation
efforts. First, more detailed information on the fre-
quency and intensity of mass die-offs may be necessary
to properly manage some species. This information is
difficult to obtain, particularly in cases where there are
infrequent but very intense catastrophes. However,
even basic information on the time period between
large mortality events and some approximation of their
size would be a significant step. This information could
be gathered in the context of basic monitoring and
should be a priority for conservation organizations and
agencies.

Secondly, recommendations are often made to
alter management to increase the population size of
threatened species. This is particularly true if  density-
independent catastrophes are considered in the assess-
ment of  their dynamics due to the large increases in
predicted persistence time that are obtained by increasing
population size. However, if  the management results in
high densities, increasing population size may actually
reduce persistence.

One might think that management recommenda-
tions would generally focus on increasing the amount
of habitat as a means of altering population sizes, thus
leaving density unaffected. However, if  the proposed
management involves increasing either the carrying
capacity or the growth rate of  a population (for
instance by reducing the mortality rate, e.g. Inchausti
& Weimerskirch 2001), without a concomitant increase
in habitat area, densities will increase. Even in cases
where population sizes are manipulated by altering
available habitat, if  animals aggregate for some activity
such as breeding, feeding, or migration, the end result may
be that densities increase with population size for at
least some portion of the lifespan. For instance, pinni-
peds aggregate on breeding grounds, and thus increases
in population size may result in higher densities for at
least for short periods during the breeding season,
which could have substantial effects on the dynamics as
we have shown in our crabeater seal example.

Even in cases where persistence times are long for
large populations, they may be much shorter at inter-
mediate levels. This is clearly illustrated by our cra-
beater seal example. If  a seal population is at a density
of  100 individuals per unit area, and a manager
charged with conserving the population has informa-
tion that persistence times are much longer at levels
closer to 1000, it may seem advisable to manage the

population to increase it to the higher population size.
However, in making this decision one must weigh the
benefits of increased persistence time at higher abund-
ance against the danger presented by the greatly
reduced persistence times predicted for intermediate
population levels through which the population must
move. Obviously some of the population dynamic
parameters must change for this increase to occur, so it
is not clear exactly what will happen at these inter-
mediate sizes, but a reduction in persistence time is a
definite possibility. One possible approach to this com-
plex problem would be to use modelling to determine
the optimal decision in the particular situation (e.g.
McCarthy, Possingham & Gill 2001). This approach
has a long history in harvesting models, particularly in
fisheries, where similar questions have been addressed
(e.g. Hanson & Ryan 1988).

Thirdly, in cases where density-dependent catastro-
phes are important, small populations may contribute
more to persistence than had been previously thought
due to the rapid rise in persistence time with popula-
tion size. This argues for careful evaluation of which
‘marginal’ populations we are willing to sacrifice when
making decisions about priorities for conservation of a
species. Finally, where a high density of a threatened
species does occur, it may be possible to increase the
probability of persistence by culling the population.
This is particularly applicable for refuges where large
wildlife populations are confined or for species that
aggregate. Traditionally, this has not been a manage-
ment approach taken for threatened species; however,
this practice is widely used to prevent population
crashes for managed game species (Robinson & Bolen
1989). The idea of culling populations of threatened
species represents a departure from conventional con-
servation measures; however, our results indicate it is
an option that should be investigated further in some
cases.

Although many populations of threatened species
may be at levels too low to experience density-dependent
mortality, various forces such as limited habitat avail-
ability, social structure, or breeding aggregations can
result in unexpectedly high densities, even among
sparse populations. Many conservation biologists dis-
miss density dependence when constructing PVAs,
often citing literature that indicates that this is a con-
servative assumption (Ginzburg et al. 1990). While
true in terms of the predictions for mean persistence
time, neglecting density dependence is clearly not
conservative with respect to the qualitative patterns
in predicted persistence times. Density dependence in
catastrophic mortality results in significant reductions
in predicted persistence times at large population
sizes and qualitatively changes the pattern of persist-
ence time with population size. Thus, it is important
to consider the possible effects of density dependence
when calculating persistence times, particularly if  a
population is known to be subject to catastrophic
mortality.
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Appendix 1

To determine the parameters for the crabeater seal
populations we began by assuming an annual population
growth rate, λ, an annual birth rate of 1 offspring per
female, and a 1 : 1 sex ratio. From these values we con-
structed a death rate that gave realistic average life-
times. If  N(t) is the population size at time t, b is the
instantaneous birth rate and d is the instantaneous
death rate:

eqn 1.1

Thus in a population with no deaths and one birth per
breeding pair

eqn 1·2

Because λ = er = e(b−d) and we now know eb we find that

eqn 1·3

Thus d = 0·396 for λ = 1·01 and 0·357 for λ = 1·05.
These rates are analogous to exponential decay rates.

For these rates to be realistic they need to result in rea-
sonable average lifespans given reasonable age specific
mortality rates. Although there are many ways to parti-
tion the rates it is necessary that the possibilities at least
include partitions that would be reasonable for a large
mammal.

An individual with a constant death rate of 0·396 has
a mean lifetime of 2·5 years, while a death rate of 0·357
yields an expected lifetime of  2·8 years. Using age-
specific mortality rates for a 1 year juvenile phase
between 0·85 and 0·9 and a subsequent adult mortality
rate of  0·05 we obtain a similar range of  expected

lifetimes, with an expected adult lifetime of 20 years.
While these results do not guarantee our parameters
are correct, they at least provide evidence that we are
within the range of reasonable values.

Appendix 2

We calculated the rate of  catastrophes based on
data reported by Geraci et al. (1982) using maximum
likelihood methods (Hilborn & Mangel 1997). Geraci
et al. report that in 1980, 445 harbour seals of a local
population of  600 died; this local group was a part
of  a regional metapopulation of  approximately
10 000 individuals. They report similar die-offs in 1931,
1957, and 1964. We take ti to be the time between the
ith and i + 1st catastrophe. If  the catastrophe rate is
constant:

Pr{t < time between two catastrophes < t + dt}
= ce−ctdt + o(dt) eqn 2·1

Given this assumption and the observed times between
die-offs, the maximum likelihood estimate (MLE) for c
was 0·0526. The 95% confidence interval around this
estimate is 0 < c < 0·115.

Clearly, there are other more simple methods for cal-
culating the catastrophe rate. For instance, it could be
calculated by simply dividing the number of catastro-
phes by the total number of years of observation. How-
ever, we chose the more formal MLE method because it
gives not only an unbiased estimate of the rate but also
a confidence interval. It is obvious that our confidence
interval does not have enough data points behind it
to be very well founded. However, given the paucity
of data on catastrophes, and extinctions in general, we
find it much more useful to make an educated guess
about the upper bounds of the rate rather than making
arbitrary decisions or avoiding exploring the possibil-
ities all together.
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