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Abstract
The standard approach to modeling survival times, or more generally, time to event
data, is often based on parametric assumptions that may not fit the data collected well.
One of the goals of this article is to discuss and compare several commonly used para-
metric and non-parametric, as well as a Bayesian semi-parametric method for survival
data. We do so in the context of the data from an experimental system where insect
herbivores become infected when consuming a lethal virus along with the plant on
which the virus resides. We used data collected on individual insects that were fed
known doses of virus alongwith varying genotypes of a single plant species (soybean),
to compare how the insect’s diet affects its time to death. Through hazard characteriza-
tion and model selection, we found that the flexible semi-parametric analysis is better
at describing the time-to-death data while maintaining a relatively parsimonious form.
Unlike the standard parametric and non-parametric approaches, the Bayesian semi-
parametric approach better captured the rapid decline in the hazard function after a
window of time where the host was most vulnerable to the virus. For our study system,
being able to accurately model time to death and quantify how plant genetics affects
within-insect disease processes allows us to gain a better understanding of the host-
pathogen interaction at an individual level. While we show the appropriateness of the
Bayesian semi-parametric approach for infection data, this method readily applies to
data sets concerned with characterizing a time until any event.
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1 Introduction

Survival analysis has a long history both within and outside ecology (Cox and Oakes
1984; Muenchow 1986). Generally, survival analysis is used to analyze time to event
data such as “failure” or “death” (Kleinbaum and Klein 2006). However, in many data
sets, not all event times are observed. Thus, survival data often consists of cases in
which the event was not observed up to a specific point in time (either the individual
was removed from the study or the study ended before the event occurred). Such
data are known as censored data. While standard statistical techniques (e.g., those
for regression modeling and density estimation), can sometimes be useful for such
data, the presence of censoring makes them generally inapplicable. In this paper,
we present a relatively recent flexible methodological approach for survival analysis,
Bayesian Multiresolution Hazard (MRH), and compare it to several commonly used
parametric and non-parametric approaches. We further investigate its ability to assess
whether differences in plant food quality affect the time to insect death in a tritrophic
interaction between a pest herbivore, its lethal pathogen, and the plant that the herbivore
consumes.

The effect of external biotic factors such as resource quality on host-pathogen
interactions remains an open-ended and well-recognized question in disease ecology
(Lively et al 2014). An important facet of how the tritrophic interaction between the
resource, a herbivore and its pathogen affect long-term disease dynamics includes how
long it takes for exposed individuals to become infectious and pass along the virus
to a new round of susceptible individuals. For lethal viruses where the next round of
viral particles are only spread upon a host’s death, the point of interest is the time at
which the host dies. Thus, we seek to model host mortality time and the effects that
factors such as diet can have on it.

A number of researchers have documented how infection rates of larval Lepidopter-
ans due to baculoviruses are influencedby the resource quality of the host plant (Richter
et al 1987; Keating and Yendol 1987; Foster et al 1992; Farrar and Ridgway 2000;
Raymond et al 2002; Ibrahim Ali et al 2002; Szewczyk et al 2006; Elderd et al 2013).
These interactions are often driven by the degree to which the host plant defends itself
via plant secondary metabolites against herbivory. These plant secondary metabolites
affect host plant quality, which can indirectly affect the host’s response to being chal-
lenged by a pathogen. However, these studies often ignore within-host processes and
focus on population-level dynamics, or simply whether or not an individual becomes
infected. Given that the time between infection and death can have important impli-
cations for population-level processes (Kennedy et al 2014), understanding how plant
defenses affect the host mortality time is a key question.

To describe the within-host infection process using host mortality time and the
influences of external biotic processes,we focused on analyzing a series of experiments
where individual Lepidopteran larvae were infected with a baculovirus. We were
interested in investigating the effects of explanatory variables such as host resources
and how they affect the time to death after ingestion of a lethal pathogen. We analyzed
these data using several common survival analysis approaches, including the MRH,
to highlight the potential benefits as well as shortfalls of these methods. Specifically,
we used parametric, non-parametric, and Bayesian semi-parametric frameworks. By
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looking at a wide variety of survival models, we obtained a good characterization
for the hazard and survival function of our host study organism, the fall armyworm
Spodoptera frugiperda. We found that the Bayesian semi-parametric MRH models
performed better at capturing the characteristics of the distribution associated with the
time to death. This reflects the greater flexibility of the MRH approach in comparison
to more commonly used parametric models.

2 Methods

2.1 The system

The fall armyworm is a multivoltine (i.e., multiple generations within a single year)
polyphagousmigratory specieswith non-overlapping generations. The life cycle of the
insect begins when adult females lay eggs in clusters on a variety of substrates. After
the eggs hatch, there are six larval instars (developmental stages) requiring 14–30 days
to reach pupation (Pitre and Hogg 1983). Adults emerge to mate and continue the fall
armyworm life cycle. Outbreaks of the fall armyworm, which have been recorded as
early as 1845 (Hinds and Dew 1915), can be quite large and wide-spread (Pair et al
1991).

Baculoviruses are ubiquitous in nature and infect a wide-range of insect species
(Miller 1997) including the fall armyworm. Baculovirus infections begin when foliage
contaminated with baculovirus occlusion bodies (OBs) are consumed by a larva (Cory
and Myers 2003). The OBs contain multiple virions surrounded by a protein coat,
which dissolves in the host mid-gut. If enough OBs are consumed, a fatal infection
occurs. The virus then replicates within the host producing millions of viral particles
until the baculovirus triggers host liquefaction (Cory and Myers 2003). Transmission
occurs whenOBs released upon liquefaction contaminate the foliage onwhich suscep-
tible hosts are feeding, and the infection cycle continues (Dwyer et al 2000). For the
fall armyworm, the species-specific baculovirus, Spodoptera frugiperda multicapsid
nucleopolyhedrovirus (SfMNPV), can infect up to 50–60% of the individuals in fall
armyworm infested areas (Fuxa 1982). Thus, SfMNPV represents an important source
of mortality in this system (Richter et al 1987).

As agricultural pests, fall armyworms readily feed on a number of different crops
including soybeans (Richter et al 1987; Sparks 1979) with later instars causing the
majority of crop damage (Sparks 1979). Soybean genotypes or isolines vary in the
amounts of plant secondary metabolites that they produce (Underwood et al 2002; Bi
and Felton 1995) including proteinase inhibitors and oxidative enzymes (Bi and Felton
1995; Botella et al 1996). These compounds affect insects directly, by altering feeding
behavior, damaging midgut tissues, and interfering with digestive processes. These
chemical compounds also affect insects indirectly by interacting with baculoviruses
in the insect midgut (Hoover et al 1998). Soybeans produce these chemical defenses
either constitutively or via induction due to herbivores feeding on the plant. Given
the wide range in both the way in which the chemical defenses are expressed and
the amount of chemical defenses produced by individual isolines, soybean serves as
an ideal plant to examine how resource quality affects time to death. Additionally,
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soybeans self pollinate and, thus, produce genetically similar offspring. By using
soybeans, we were able to examine the time to death once infected without being
concerned about differences in plant quality due to genetic variation.

2.2 Experimental design

We carried out a series of laboratory experiments in order to determine how differ-
ences in leaf tissue/resource quality affect the time to death of lethally infected fall
armyworms. Newly hatched larvae were transferred to two oz. plastic cups, containing
approximately one half oz. of a wheat-based artificial diet. The larvae were reared on
the artificial diet at 25 ◦C until they reached the third instars with head capsules that
had begun to slip forward (a sign that fourth instar is imminent). The larvae were then
removed from their diet and starved overnight. This ensured that all larvae were at
the same development stage since larval age affects the susceptibility of the larvae
to the virus (Hoover et al 1998). We chose to examine time to death using fourth
instars since the fourth instars not only cause a great deal of defoliation but also play
an important part in the disease transmission process (Elkinton and Liebhold 1990;
Elderd and Reilly 2014).

We chose nine different genotypes of soybeans along with a diet control to examine
how resource quality affects time to death. Three of the genotypes could be considered
non-inducible such that they do not upregulate plant secondarymetabolites when eaten
by herbivores (Underwood et al 2000, 2002). The remaining six genotypes have been
shown to upregulate plant secondary metabolites due to herbivore damage and can
be considered inducible (Underwood et al 2000, 2002). The soybeans were grown
at 28.9 ◦C with a 16h day, 8h night cycle until their leaves were at the two trifoliate
stage.

For the experiment, we cut out 1 cm2 of undamaged leaf tissue from multiple
trifoliate leaves for each genotype and put a standard artificial diet cube on the leaf
disks. These were placed in an empty two oz. cup. A 3µl droplet of water with 105

OBs was then placed on the diet cube. 105 represents a rough estimate of LD95, or
the lethal dose at which 95% of those infected die when fed the virus on a cube of
artificial diet (Elderd, unpublished data). Controls consisting of 3µl of water without
OBs were used to check for background contamination in the lab, to assure that no
mode of transmission other than that due to diet was present. The recently molted
fourth instar larvae were then placed in the cup and allowed to feed for 24 h. We also
had a diet group where the larvae were fed a virus inoculated diet cube without a leaf
disk. Larvae that did not consume the whole leaf disks along with the cube of infected
diet were discarded and not included in the analysis. All individuals included in the
analysis were placed back on artificial diet and reared in an environmental chamber at
28.9 ◦C under a 16h day and 8h night. We counted the number of dead larvae every
12 h, which was confirmed either visually or under a light microscope where OBs are
clearly visible (Cory andMyers 2003). The total sample size from our experiment was
555 individual larvae, with 433 larvae dying from infection (cause of death verified)
during the experiment, and 122 surviving at least until the end of the experiment.
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3 Modeling fall armyworm time to death

The experiment described above gives rise to data of the form

(ti j , ci j ); i = 1, . . . , k; j = 1, . . . , 10,

where ti j represents the time of death or time of censoring (within 12-h intervals) of
the i th larva in the j th soybean genotypic group (with the artificial diet being treated
as the 10th group). We have right censored mortality data for 122 larvae that survived
the experiment. The censoring indicator, ci j is a binary variable with 0 denoting right
censoring (death not observed within the experimental time frame) and 1 otherwise
(death observed within the experimental time frame).

In our study, the random variable of interest is the continuous mortality time (T ) of
each of the larvae within each plant genotype. In addition to describing the distribution
of T , we also aim to look at variability in time to deathwith respect to the plant genotype
on which the larvae consumed the virus. There are several ways of analyzing survival
time data, the overall goal being to summarize the main features of the distribution
and examine the effects of explanatory variables (Dobson 2002). For our data, we
will estimate the survival and hazard functions of T using parametric, non-parametric
models and semi-parametric methods. Parametric models require the specification of
a known family of probability distributions for the time to death while non-parametric
models do not assume a specific probability distribution. Semi-parametric models
contain both a parametric form and a non-parametric form in its model definition.

3.1 Non-parametric analysis

The simplest and most commonly used non-parametric method for visualizing cen-
sored survival data is the Kaplan–Meier curve (Kaplan and Meier 1958). The
Kaplan–Meier estimator uses both censored and non-censored information in the sam-
ple based on the following formula:

Ŝ(t) =
∏

h: th≤t

nh − dh
nh

, (1)

where th is time at which at least one death happened, nh is the number of individuals
alive just before time th and dh is the number of deaths at time th .

3.1.1 Kaplan–Meier estimates for the fall armyworm data

We estimated Kaplan–Meier survival curves and their point-wise confidence bands
estimated using Greenwood’s formula (Greenwood 1926) for each of the soybean
genotypes (Fig. 1, Table 1). Figure 1 shows that the survival probability in each group
decreases steadily after a few days into the infection process. Genotypes Davis, Gasoy
and Stonewall have a few additional deaths after a long time interval towards the
end of the experiment. However, there is a notable difference in the diet group which
represents the non-soybean diet consumption of the virus: half the population survives
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Fig. 1 Kaplan–Meier survival curves and their 95% confidence bands for the fall armywormmortality data.
‘NI’ stands for non-inducible genotypes and ‘I’ for inducible genotypes (Underwood et al 2000). The diet
group fed on virus-laced artificial diet only and did not ingest any soybean leaves

at the end as seen in the figure as the survival curve levels off at the 0.5 value for S(t).
Based on this exploration of the data, there seems to be a need to model the diet group
separately from other groups. This also gives rise to the hypothesis that the presence
of soybean genotype in the diet of the larvae significantly affects its mortality rate.
Additionally, it seems that the genotypes themselves differ in terms of fall armyworm
mortality.

3.2 Parametric analysis

While the Kaplan–Meier estimator works well as an exploratory tool, survival models
are better capable of assessing systematic differences between groups of covariates.
Furthermore, they provide greater flexibility with regard to model comparison and
selection. They also enable the inclusion of covariate effects in our model such as
genotypes. Survival models are also able to precisely account for different types of
censoring. Specifically, in our dataset the exact times of deaths are unknown; the only
information we have is that they happened between data collection points, within 12 h
intervals. This is known as interval censoring (Kleinbaum and Klein 2006). Survival
models will also be able to account for the extra uncertainty due to the imprecise time
observations.
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Table 1 Table of estimated
Kaplan–Meier mean and median
survival times (in days) for each
genotype along with the
respective sample sizes
(Brookmeyer 2014)

Genotype Median Mean Sample size

Williams 6.42 7.15 44

Stonewall 6.23 7.42 59

Gasoy 6.68 7.26 57

Bragg 6.17 7.01 56

Braxton 6.74 7.20 60

Clark 6.74 7.37 59

Davis 6.38 7.38 60

Tracy 6.67 7.41 54

Cook 6.13 6.62 45

Diet − 9.49 60

The median survival time for the Diet group is not calculated because
the diet survival function does not fall below 0.5 in our data set

To start, we consider distributions drawn from the extensive family of generalized
gamma distributions such as Weibull, lognormal and gamma which are some of the
most commonly used distributions for parametric modeling of time-to-event data (Cox
et al 2007). Additionally, we look at various ways of building these parametric models
ranging from using individual parametric distributions for each genotype to including
random effects or group effects in our models.

3.2.1 Fixed effects model

We begin by considering the simplest model where each soybean genotype mortality
dataset is fitted individually by a common probability distribution, with no relationship
between the different genotypes. Each group j ( j = 1, . . . , 10), has its own set of
parameters (Θ j ) that parametrize its time to death distribution. The likelihood function
for this “fixed effects” model can be expressed as:

10∏

j=1

n j∏

i=1

L
(
Θ j |ti j , ci j

) ∝
10∏

j=1

n j∏

i=1

f
(
ti j | Θ j

)ci j S
(
ti j | Θ j

)1−ci j , (2)

where n j is the number of worms in group j , f (ti j | Θ j ) is the probability density
function of time to death (only playing a role in the likelihood when the observation is
uncensored and ci j = 1), and S(ti j | Θ j ) is the corresponding survival function (only
playing a role in the likelihood when the observation is censored and ci j = 0), both
depending on the group-specific set of parameters Θ j .

In our study the times ti j are not observed continuously, but rather are reported
only in half-day (12-h) increments, where ti j = z indicates that the event happened
sometime during the previous 12 h (z − 0.5, z] in case of non-censored events. For
censored events, ti j = z would simply indicate that the censoring occurred at that
time. Thus, we cannot use the above formula (2) directly. Instead, we can explicitly
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model the interval censoring in the likelihood as follows:

10∏

j=1

n j∏

i=1

(∫ ti j

ti j−0.5
f (s | Θ j ) ds

)ci j

S(ti j | Θ j )
1−ci j . (3)

We implement three different choices of the generalized gamma density functions
f (ti j | Θ j ), namely Weibull, lognormal and gamma, below.

Weibull Distribution Fixed Effects Model We first consider the Weibull distribu-
tion, which can capture accelerated failure time with their hazard functions either
being monotonically increasing or decreasing based on the value of scale and shape
parameters. Thus, it could be a good candidate to capture the increase in death as
time progresses as seen in our exploration of the data. The likelihood function for this
model is given as:

10∏

j=1

n j∏

i=1

⎛

⎝ k j

θ
k j
j

∫ ti j

ti j−0.5
sk j−1 exp

(−s

θ j

)k j
ds

⎞

⎠
ci j (

exp

(−ti j
θ j

)k j
)1−ci j

, (4)

where k > 0 is the shape parameter and θ > 0 is the scale parameter of the distribution.

Gamma Distribution Fixed Effects Model The gamma distribution arises naturally
in many real-life phenomena and is a frequently used distribution for modeling non-
negative random variables like time to death. Like Weibull, its hazard functions can
be either monotonically increasing or decreasing, based on the value of the scale and
shape parameters (Cox et al 2007). The likelihood function for the gamma model is
given as:

10∏

j=1

n j∏

i=1

⎛

⎝ 1

Γ (k j )θ
k j
j

∫ ti j

ti j−0.5
sk j−1 exp

(−s

θ j

)
ds

⎞

⎠
ci j (

1 − γ (
ti j
θ j

, k j )

)1−ci j
, (5)

where

γ

(
ti j
θ j

, k j

)
= 1

Γ (k j )θ
k j
j

∫ ti j

0
sk j−1 exp

(−s

θ j

)
ds.

Here k > 0 is the shape parameter and θ > 0 is the scale parameter of the distribution.
Note in the above expression, Γ (k j ) is the gamma function evaluated at k j while

γ
(
ti j
θ j

, k j
)
defined above is known as the lower incomplete gamma function.

Lognormal Distribution Fixed Effects Model Unlike in the Weibull and Gamma
cases, the hazard function of a log-normally distributed random variable need not be
monotone. In fact, it can have an upward arc shape whichmakes it a good candidate for
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our data to capture a possible peak in hazard during our study period. The likelihood
function for this model is given as:

10∏

j=1

n j∏

i=1

(
1

σ j
√
2π

∫ ti j

ti j−0.5

1

s
exp

(
−(log(s) − μ j )

2

2σ 2
j

)
ds

)ci j

(
1

2
− 1

2
erf

(
log(ti j ) − μ j√

2σ j

))1−ci j

, (6)

where,

erf

(
log(ti j ) − μ j√

2σ j

)
= 2√

π

∫ log(ti j )−μ j√
2σ j

0
exp(−s2)ds.

Here, μ is the mean and σ is the standard deviation of the associated normal distribu-
tion. On a logarithmic scale, μ and σ are called the location parameter and the scale
parameter, respectively.

3.2.2 Model with clustering

Wenext consider a set ofmore complexmodelswhich relax the assumptionof genotype
independence and allow for clusters depending on some known biological properties
of the genotypes. For example, the diet group which did not feed on a soybean leaf
would be expected to have a different distribution (and consequently, hazard shape)
compared to groups that fed on soybean leaf disks. Figure 1 further supports this
hypothesis. Additionally, as discussed earlier, results from Underwood et al (2000,
2002) can be used to cluster the genotypes as inducible and non-inducible. The non-
inducible genotypes include Bragg, Gasoy and Tracy and inducible genotypes include
Braxton, Clark, Cook, Davis, Stonewall andWilliams. Thus, the likelihood for a three-
cluster fixed-effect model can be expressed as:

3∏

j=1

n j∏

i=1

(∫ ti j

ti j−0.5
f (s | Θ j ) ds

)ci j

S(ti j | Θ j )
1−ci j , (7)

where j denotes the cluster ( j = 1, 2, 3 corresponding to inducible, non-inducible
and diet), and i denotes the larvae within each cluster. Worms within each cluster
are assumed to have the same hazard rate, depending on the cluster-specific set of
parameters Θ j . In principle, cluster time-to-events can belong to different families
of distributions, although in our analysis we will only consider the same family (log-
normal) for all clusters.
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3.2.3 Random effects model

We next considered a set of random effects models, that presents a way to explicitly
characterize the heterogeneity among the groups. These models are based on the
premise that each group is allowed to have some unique distribution aspects while
sharing some commonalities, described via the common random-effects distribution:

10∏

j=1

g(Θ j | Ψ )

n j∏

i=1

(∫ ti j

ti j−0.5
f (s | Θ j ) ds

)ci j

S(ti j | Θ j )
1−ci j . (8)

Here j again denotes the genotype groups, j = 1, . . . , 10. We further assume that
each Θ j is an independent and identically distributed draw from the common random
effect distribution g(Θ j | Ψ ), depending on a common parameter Ψ which is also
to be estimated from the data. The variance of this distribution is considered the
heterogeneity parameter; the larger this variance, the less alike the groups are, and
the higher the level of heterogeneity. We implement two different generalized gamma
density functions, namely lognormal and gamma.

GammarandomeffectmodelThismodel assumes that eachgroup-specificparameter
Θ j = (k j , θ j ) is drawn independently from a gamma distribution with the common
parameter Ψ = (ka, θa, kb, θb), as follows:

k j ∼ G a(ka, θa),

θ j ∼ G a(kb, θb),

where the subscripts a and b denote the hyper-parameters associated with the gamma
distributions for k j and θ j parameters respectively. The likelihood function for this
model is given as:

10∏

j=1

⎧
⎨

⎩

(
1

Γ (ka)θ
ka
a

(k j )
ka−1 exp

(−k j
θa

)) (
1

Γ (kb)θ
kb
b

(θ j )
kb−1 exp

(−θ j

θb

))

n j∏

i=1

⎛

⎝ 1

Γ (k j )θ
k j
j

∫ ti j

ti j−0.5
sk j−1 exp

(−s

θ j

)
ds

⎞

⎠
ci j (

1 − γ (
ti j
θ j

, k j )

)1−ci j
⎫
⎬

⎭ . (9)

Lognormal random effect model This model assumes that each group-specific
parameter Θ j = (μ j , σ j ) is independently drawn from a lognormal distribution with
the common parameter Ψ = (μa, σa, μb, σb), as follows:

μ j ∝ LN (μa, σa),

σ j ∝ LN (μb, σb),

where the subscriptsa andb denote the hyper parameters associatedwith the lognormal
distributions for μ j and σ j parameters respectively. The likelihood function for this
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model is given as:

10∏

j=1

⎧
⎨

⎩

(
1

μ jσa
√
2π

exp

(
− (log(μ j ) − μa)

2

2σ 2
a

))

×
(

1

σ jσb
√
2π

exp

(
− (log(σ j ) − μb)

2

2σ 2
b

))

×
n j∏

i=1

(
1

σ j
√
2π

∫ ti j

ti j−0.5

1

s
exp

(
−(log(s) − μ j )

2

2σ 2
j

)
ds

)ci j

×
(
1

2
− 1

2
erf

(
log(ti j ) − μ j√

2σ j

))1−ci j
⎫
⎬

⎭ . (10)

3.3 Semi-parametric analysis

In survival analysis, semi-parametric analysis refers to assuming a non-parametric
form for the hazard (or survival) function and a parametric form for the covariate
effects. A popular semi-parametric model is the Cox proportional hazard model (Cox
1972):

h(t) = hbase(t) exp(X
′β), (11)

where β is a vector of covariate effects, hbase(t) is the underlying baseline hazard
function, and h is the hazard function for the group characterized by the unique com-
bination of covariate levels X . Unlike in the parameter models where the hbase(t)
was specified using a known family of probability distributions, the Cox proportional
hazard model does not assume a form for the baseline hazard and treats it as a nui-
sance parameter in estimation. However, for models where the primary interest lies in
estimating the survival function (or equivalently, the hazard function; see Appendix
1), the baseline hazard is not a nuisance parameter. In order to estimate survival curves
using Cox proportional hazard model, the Breslow estimator (Breslow 1972) is widely
used to estimate the cumulative baseline hazard and subsequently the baseline survival
function. It is given by,

Λ̂0(t) =
∑

τ j<t

(
d j∑

k∈R(τ j )
exp(β̂ ′xk)

)
, (12)

where d j is the number of deaths at time t j and R(τ j ) is the risk set (number of
survivors) at time t j .The estimator directly uses the β̂ parameter estimates from Cox’s
maximum partial likelihood estimator in estimating the hazard for a small time period.
However, the estimator is known to be an inconsistent estimator of the hazard rate (Burr
1994).
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3.3.1 Bayesian semi-parametric analysis

Here, we present a semi-parametric analysis in a Bayesian framework that estimates
the hazard function explicitly. All the priors for our Bayesian models presented are
chosen to be vague, in order for the results from these models to be comparable to the
likelihood-based results from our parametric models.

The multiresolution hazard (MRH) model is a Bayesian semi-parametric model
which enables us to estimate the baseline hazard rate hbase(t) jointly with the covariate
effects in the model. The approach consists of choosing a set of discretized time points
t0, t1, . . . , tJ so that J represents the total number of bins across the time interval
of interest. We set J = 2M (M ∈ Z

+) to take advantage of the known and fast
multiresolution wavelet methods (Bouman et al 2005) for estimation.

The MRH model is based on the partition of the baseline cumulative hazard into
hazard increments as follows:

d j = Hbase(t j ) − Hbase(t j−1) =
∫ t j

t j−1

hbase(s)ds,

where hbase(s) is the baseline hazard rate at time s. (Bouman et al 2005; Dukic and
Dignam 2007). The hazard increments d j can now be chosen such that the prior
beliefs about the underlying hazard function can be incorporated into the model.
We follow the notation introduced in Bouman et al (2005) where H0,0 is the total
cumulative baseline hazard over the entire time period (0, tJ ) (so H0,0 = H(tJ )), and
HM,i−1 = di for i = 1, . . . , J . Then the multiresolution hazard tree is recursively
defined by Hm−1,p = Hm,2p +Hm,2p+1 form = 0, . . . , M and p = 0, . . . , 2m−1−1.
Here,m is the current level of resolution and p is the position within that level. Hence,
the model splits the initial total cumulative hazard H(tJ ) into finer components with
each additional level of resolution until we finally get to the bottom of the tree with the
hazard increments d j . The recursive splits of H over different branches is defined as
Rm,p = Hm,2p/Hm−1,p, and are known as the ‘split parameters’. Therefore, we can
parametrize the hazard increments by H0,0 and the “splits” by R1,0, . . . , RM,2M−1−1
(denoted as Rm,p hereafter). Figure 2 demonstrates how the MRH approximates the
baseline hazard shape. The complete hazard rate prior is specified by putting priors
on all the aforementioned tree parameters: a Gamma prior is placed on H , and Beta
priors on each split parameters Rm,p:

H ∼ G a(a, λ),

Rm,p ∼ Be(2γm,pk
ma, 2(1 − γm,p)k

ma). (13)

Dukic andDignam (2007) extended theMRHmodel to include a hierarchical structure
and relax the proportional hazards assumption. One advantage of this method is that
it permits a different baseline hazard shapes according to the group, and clustering of
baseline hazards within each group.
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Fig. 2 This figure shows the MRH approximation of the hazard function. The yellow curve is the true
hazard function, and the black lines are MRH approximations which get progressively better with finer time
resolutions (shown for 4 different resolution values of M: 3, 4, 5 and 6)

3.3.2 Candidate MRHmodels

For larva i in genotype (stratum) s, with failure (or censoring) time at Ti,s ∈ [0, tJ ),
its likelihood contribution is:

Li,s(β | Ti,s Xi,s) = (
h0,s(Ti,s) exp(X

′
i,sβ)

)ci S0,s(Ti,s)exp(X
′
i,sβ)

, (14)

where h0,s denotes the baseline hazard rate for genotype (strata) s, Xi,s is the larval
covariate vector and S0,s denotes the baseline survival function for the genotype s.
Additionally, the ci is the censoring variable which is 1 if larva i had an observed
death and 0 if it was right-censored.

1. Proportional Hazard Assumption
Under the proportional hazard assumption, we treat genotype and diet groups as
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covariates, so the log-likelihood for all N larvae is:

log L(T|β,H,Rm,p,X) =
N∑

i=1

ci {log(h0(Ti ))+X ′
iβ}−exp(X ′

iβ)H0(Ti )}, (15)

where H0(T ) = − log S0(T ), is the cumulative baseline hazard. Here, X ′ repre-
sents the N × 10 design matrix of 10 group indicator covariates. The columns are
binary coded representing whether a larva, represented by a row, belongs to the
i th group.

2. Non-proportional Hazard Assumption
The log-likelihood for all N larvae inS strata together is:

log L(T|β,H,Rm,p,s,X) =
S∑

s=1

Ns∑

i=1

ci {log(h0,s(Ti,s)) − H0,s(Ti,s)}. (16)

Here, we have 10 strata representing nine genotype and one diet group. In this
model, we have no covariates so the design matrix and β are no longer present in
the likelihood function. Instead, we have the genotypes and diet being categorized
as strata s with their own baseline hazards. Thus, each Ns represents the number
of larvae in genotype s.

3. Non-proportional Hazard Assumption on Genotype Clusters
We can look at MRH models where we impose a similar grouping structure as in
our parametric analysis discussed in Sect. 3.2.2. The genotypes can be grouped
into clusters of inducible and non-inducible defenses. Similarly, the diet is its own
group due to the lack of soybean intake by the fall armyworm. We looked at two
different grouping structures:

(a) Soybean versus non-soybean diet: The log-likelihood for all N larvae in 2
strata will be:

log L(T|β,H,Rm,p,s,X) =
2∑

s=1

Ns∑

i=1

ci {log(h0,s(Ti,s)) − H0,s(Ti,s)}. (17)

(b) Inducible versus non-inducible versus non-soybean diet:Wewill have a similar
log-likelihood for all N larvae inS strata where we have 3 strata:

log L(T|β,H,Rm,p,s,X) =
3∑

s=1

Ns∑

i=1

ci {log(h0,s(Ti,s)) − H0,s(Ti,s)}. (18)

The corresponding strata in this model are non-inducible, inducible, and the
diet group.
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3.4 Model fitting

The parametric models were fitted using a custom maximum likelihood optimization
code in MATLAB, based on Newton-Raphson algorithm with numerical first- and
second-order derivatives. We specified the starting values based on the group sample
statistics such as the mean and variance. The MRH models were estimated using the
Bayesian framework and MCMC in the R package ‘MRH’ (Dukic and Dignam 2007;
Bouman et al 2005; Hagar et al 2014; Chen et al 2014) where M = 5 was chosen so
that there were J = 2M = 32 bins where each bin represents a 12 h time interval.
The MRH package assessed convergence through standard graphical techniques and
Gelman-Rubin diagnostics.

3.5 Comparison of candidatemodels

We examine several information criteria in order to compare the candidate models.
Measures of predictive accuracy are typically based on the deviance (the log predictive
density of the data given a point estimate of the fitted model, multiplied by −2; i.e.,
−2 log p(y|θ̂ )). When comparing models of different complexity, a penalty based on
that complexity is usually added, reflecting the fact that larger more complex models
can generally fit the data better. The information criteria described below impose
penalties based on the number of parameters in a model, which is the most common
and simplest approximation of model complexity. Using such criteria for hierarchical
and Bayesian models is not straight forward, as the number of parameters is not a well
defined concept in these models due to often strong dependencies between parameters
themselves, even though some catered solutions have been proposed (Donohue et al
2011; Vaida and Blanchard 2005; Greven and Kneib 2010).

The first information criterion we consider is the Akaike Information Criterion
(AIC) as defined by Akaike (1973):

AIC = −2 log p(y|θ̂mle) + 2k, (19)

where k is the number of parameters estimated in the model. Additionally, we also
used the Bayesian Information Criterion (BIC), where

BIC = −2 log p(y|θ̂mle) + k log(n), (20)

where k is again the number of parameters estimated in the model. The BIC pro-
vides a higher penalty for larger sample size, n, compared to AIC, and hence favors
simpler models (Gelman et al 2013). For our Bayesian models, we also calculated
the Watanabe–Akaike or widely available information criterion (WAIC) as defined in
Gelman et al (2013):

W AIC = −2 lppd + 2pW AIC , (21)
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where pW AIC is defined as the effective number of parameters,

pW AIC =
n∑

i=1

varpost (log p(yi |θ)). (22)

Similarly, the log pointwise predictive density (lppd) in Eq. 21 is calculated as:

computed lppd =
n∑

i=1

log

(
1

M

M∑

m=1

p(yi |θm)

)
(23)

over M posterior draws and n data points. By comparing across all the information
criteria, we hope to choose the best model that accounts for both the goodness of fit
and the number of fitted parameters.

4 Results

For each candidate model (Table 2), we estimated the model parameters using either
maximum likelihood or Bayesian posterior mean estimates (under vague priors), and
calculated each of the information criteria scores. For the BIC and AIC computation
in MRH models we used the total number of parameters (including prior parameters
which are estimated from the data), because it is the worst case scenario for the
Bayesian MRH models, as it puts the maximum amount of penalty possible on them.
This avoids the difficultywith counting the effective number of parameters in Bayesian
hierarchical models (Spiegelhalter et al 2002), by giving an upper bound on the BIC
and AIC for these models. For the random effect models, we presented a range for
AIC and BIC, corresponding to the lowest penalty (counting only the likelihood-level
parameters and not the random effect distribution parameters) and the highest penalty
(counting all parameters, including those from the random effect distribution.)

In general, the Bayesian semi-parametric models had uniformly lower model selec-
tion criteria than any of the parametric models. The Bayesian models performed better
under the worst penalty than the parametric models under the lowest penalty. Within
the parametric models, lognormal distribution models performed better than the rest.
The best-fit model across all criteria was theMRHmodel with the proportional hazard
assumption (Model 8).

In terms of whether clustering better explained the data, clustering the groups based
on plant induction type did not seem to produce a better model. The clustered models
in the parametric family (Models 4 and 5) did not perform much better than the non-
clustered lognormal (Model 3). Similarly, the clustered MRH models (Models 10 and
11) did not perform better than our best-fit model which assumes proportional hazard
for individual genotypes (i.e., no clusters).

Figure 3 shows the estimated log hazard functions for our parametric models using
gamma, Weibull and lognormal distributions. The Cook genotype had a higher hazard
estimate than the rest of the genotypes in two of the three models. All of the parametric
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Fig. 3 Log hazard rates resulting from the maximum likelihood estimation of the individual parametric
models for each genotype and diet. The shaded regions represents the 95% pointwise confidence interval
associated with each estimate

models seem to have a difficult time capturing the decrease in the hazard function over
time, although the lognormal model does better than the rest.

Figure 4 shows the estimated hazard functions for our clustered parametric models
with lognormal distributions. The two cluster model in Fig. 4a shows a much higher
hazard rate (approximately 5 times higher) associated with consuming infected soy-
bean leaves compared to the diet group that did not consume soybean leaves. We see a
similar hazard behavior in the three cluster model in Fig. 4b. Interestingly, the almost
entirely overlapping hazard curves for the induced and non-induced genotypic groups
imply that there is very little difference in hazard associatedwith the two groups except
for a wider confidence band associated with the non-induced genotypes. However, as
in the fixed effects individual model, the cluster models are unable to entirely capture
the rapid decrease in hazard over time.

Figures 5 and 6 represent the hazard functions estimated by the MRH models.
We see a similar characterization with Cook having the highest hazards. We also see
similar hazard differences between the clusters and diet group in MRH and MLE
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Fig. 4 Hazard rates resulting from the maximum likelihood estimation for parametric analysis of clustered
models. The shaded regions represents the 95% pointwise confidence interval associated with each estimate

Fig. 5 Hazard rates for MRH models under the proportional hazard and the non-proportional assumptions.
The shaded regions represents the 95% pointwise credible interval associated with each estimate

Fig. 6 Hazard rates of clustered MRH models under the non-proportional assumption. The shaded regions
represents the 95% pointwise credible interval associated with each estimate
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(b) Model 8, MRH Proportional Hazard

Fig. 7 A comparison of the predicted survival curves from our best-fit model and the semi-parametric Cox
proportional hazard model

models, seen in Figs. 4 and 6. The cluster MRH NPH models in Fig. 6 also show a
higher hazard associated with being on the soybean diet. As in the lognormal three
cluster model in Fig. 4b, the hazard curves for the induced and non-induced genotype
are very similar in the MRH three cluster model in Fig. 6b. Thus, both our parametric
cluster model and the MRH cluster model show negligible difference in the hazard
associated with the two types of genotypic cluster. However, the MRHmodels capture
the decrease in hazard over time much better, which is an important feature of the
data. The hazard rate for the fall armyworm seems to peak around Day 7.5 after the
start of the infection and decays close to 0 as time passes. This hazard characteristic
is seen in all the MRH models.

Figure 7 presents a visual comparison of the estimated survival curves from our
best fit model, Model 8 and the Cox proportional hazard model given in Eq. (11). The
baseline survival for the Cox model was estimated using the Breslow estimator given
in Eq. (12). The estimated survival from the Cox model were much lower than those
from our best fit MRHmodel in all groups, particularly around the time that the hazard
peaks in Figs. 5 and 6. Moreover, the MRH-based model is able to provide a range
of survival curves for different genotypes and better represent the differences among
those, compared to the Cox proportional model which predicts low survival (< 0.1)
after Day 6 for most of the genotypes.

5 Discussion

Our best-fit model assumes a proportional hazard assumption under the Bayesian
semi-parametric framework of MRH. Given the severe penalties of BIC, AIC and
WAIC for this relatively complex model, it is clear that a multiresolution approach to
characterizing the hazard allows a researcher to draw the maximum amount of infor-
mation from these data. The parametric models appear to capture the initial increase
in hazard well but fail at accurately modeling the decrease. The widely used Weibull
and gamma models cannot capture any decrease in hazard, as seen in Fig. 3. This is
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because while both the Weibull and gamma models are flexible and allow for haz-
ard rates that are non-constant, they are constrained to have monotonic hazard shapes.
Hence, they will fit any dataset with a non-monotonic hazard rate poorly. However, the
lognormal distribution does allow for non-monotonic shapes of hazard function (e.g.,
inverse bath-tub shaped) but still fails to capture the decrease in the hazard function
rapidly enough due to the strong smoothness property. These approaches simply fail
to maximize the information drawn from the mortality data in this case. Hence, our
results demonstrate the pitfalls of assuming a commonly used parametric form for the
mortality time for computational and analytic simplicity without further analysis of
the hazard’s shape. The apparent decrease in hazard modeled by all the MRH models
suggests that the probability of dying for the larvae decreases dramatically after the
hazard has peaked around day 7.5 of the infection. Biologically, this fits well with the
fact that if the larvae are able to survive the infection up until a certain time point, they
should be expected to survive well beyond that time point as well.

Figure 7 shows the estimated survival curves for different genotypes based on our
semi-parametric MRH approach (where the baseline hazard is jointly estimated along
with the covariate effects), and based on the Cox proportional hazard model (where
the Breslow estimator (Breslow 1972) is used to estimate the baseline cumulative
hazard). The Breslow estimator is a non-parametric maximum likelihood estimator
for the cumulative baseline hazard estimate, and is based, in part, on the Cox partial
likelihood covariate effect estimates. While the performance of this combination of
non-parametric likelihood and partial likelihood estimators in finite samples is not
entirely understood, it has been observed that it can lead to non negligible bias and
underestimated uncertainty for the hazard function (Hagar and Dukic 2015). On the
other hand, the Bayesian MRH model is explicitly formulated to estimate the joint
finite-sample uncertainty through the joint posterior distribution, which is based on
the joint likelihood for the hazard function and covariate effects. Hagar and Dukic
(2015) present an extensive comparison of the performance of the MRH model with
other commonly used, comparable semi-parametric survival models including the
Cox model. They found that the Cox model based estimators for the baseline hazard
function did not perform well in terms of bias and mean square error, unlike theMRH.
Therefore, if accurate hazard shapes and a proper quantification of the associated
uncertainty are of interest, including the option of relaxing the proportional hazard
assumption, the MRH model is a valuable option.

Our results also show that there is clearly a larger hazard associated with consuming
the virus with a soybean leaf compared to consuming the virus without ingesting leaf
tissue. Our best-supported model treats the diet as the baseline and characterizes the
hazards of each genotype as a proportion of this baseline. Thus, studying the covariate
effect of the different genotypes helps us understand the risks or benefits associated
with the fall armyworm food quality and its effect on the speed of kill. Given that
the infection process in the field involves a tritrophic interaction that includes the
host’s food resources, our results show that ignoring the effect of the resource could
be costly. Clearly, the data demonstrate that different soybean genotypes play a role
in the time to death for the host. There has been extensive work done on host and
pathogen variability and genetic diversity as a way of understanding host-pathogen
interactions (Elderd et al 2008; Myers and Cory 2016; Kennedy et al 2014; Dwyer
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et al 1997). However, the impact of plant genetic diversity on within host processes
has not been studied or modeled extensively (but see Shikano et al 2017). Our results
strongly suggest that any kind of within-host interaction model for the fall armyworm
should include plant genotypic variability. The importance of the resources consumed
by a host in helping or hindering individuals fighting off an infection should not be
limited to just the interactions considered here (Lively et al 2014). The next step
would be to move beyond the within-host effects and incorporate our findings in a
model examining the population-level consequences of this tritrophic interaction that
includes a plant/resource genotype component.

Interestingly, our clustering approach based on the level of induced resistance in
the genotypes did not result in a better model for these data. While the results in
Figs. 4 and 6 are striking, this still implies that induction grouping does not seem
to tell the entire story in this case. In our experiments, undamaged leaf tissue was
provided to the larvae as opposed to damaged leaf tissue, which may trigger the
induction of additional defenses (Underwood et al 2002). Thus, some of the genotypes
could have low inducible resistance but still have high constitutive defenses. Previous
researchers have found no evidence of a correlation between induced and constitutive
resistance (Underwood et al 2000). A clustering method based on constitutive defense
would make for a good comparison but we did not examine how constitutive defenses
affect the within-host process because the level of constitutive defenses in each of the
genotypes was not available to us.

Through the comparison between the parametric approach and Bayesian semi-
parametric approach,wehave shown that standardmethodsmaynot be able to correctly
characterize the hazard shapes and that the flexibility of the Bayesian semi-parametric
approach does. When the data are censored, which is often the case in nature, the flex-
ibility of the Bayesian semi-parametric approach may become even more important.

While we focused on plant genotypic variability, we have not considered other
factors that can influence within-host processes. These include host genetic variabil-
ity (Dwyer et al 1997; Elderd et al 2008; Páez et al 2015) and pathogen variability
(Fleming-Davies et al 2015). Similarly, population-level processes could have effects
on the within-host level process which we have not considered here. However, it
would be a natural extension to our models and would be a reasonable avenue for
future research. Specifically, our results highlight the importance of considering the
tritrophic interaction between the host, its food resources, and its pathogen for disease
driven systems.

We demonstrated the flexibility and utility of the MRH model in modeling time
to death for interval- and right-censored data. However, the method can be also used
for a variety of censored survival data, including those arising from mark-recapture
studies where it is common to have missing or incomplete records. Specifically, if it
is important to accurately model the hazard shape for use in population models, the
MRH method can be easily implemented on left-, right-, or interval-censored data. In
general, researchers have found the use of individual hazard models to be a powerful
approach for analyzing mortality rates whether or not the data are censored (e.g., Zens
and Peart 2003). Additionally, the flexibility of being able to estimate a combination
of multiple proportional and non-proportional covariate effects in survival data makes
this a useful tool in modeling most kinds of censored as well as uncensored data.
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Lastly, these methods are applicable to any kind of non-death event data in ecology
and evolution where hazard (albeit interpreted differently) is of primary interest, and
show that flexibility of a semi-parametric approach can allow researchers to maximize
the amount of information drawn from their data.
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Appendix 1: Survival and hazard functions

Survival function Let T be a non-negative random variable representing the waiting
time until the occurrence of the event in question. Then, the cumulative distribution
function, F(t) = P(T < t), is the probability that the event has occurred by duration
t . Hence, the survival function is the probability of survival beyond time t . It is given
by

S(t) = P(T ≥ t) = 1 − F(t). (24)

It is a non-increasing function that starts at 1 and asymptotically goes to 0 as time goes
to infinity.
Hazard function The hazard function can be defined as the probability of failure in an
infinitesimally small period between t and t + ct given the subject has survived until
time t . In other words, it is an instantaneous rate of failure. Let f (t) be the probability
density of failure in an infinitesimally small period between t and t + ct . Then, the
hazard function is defined as,

h(t) = f (t)

S(t)
, (25)

which is the probability that the event occurred in the interval t to ct divided by the
probability that an individual survived to time t . It is also a non-negative function
but unlike the survival function, it can take any shape and is not bounded between 0
and 1.
Cumulative hazard function The cumulative hazard function,

H(t) =
∫ t

0
h(y)dy

is also a measure of risk such that the higher the cumulative hazard, the greater the
risk of failure by time t .

Substituting Eq. 24 into Eq. 25 we get,

h(t) = f (t)

1 − F(t)
.
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Integrating both sides from 0 to t ,

∫ t

0
h(y)dy =

∫ t

0

f (y)

1 − F(y)
dy

H(t) = − ln(1 − F(t)) [Since, F ′(t) = f (t)]
H(t) = − ln(S(t))

exp(−H(t)) = S(t).

Appendix 2: Associated Log-likelihood functions

– The corresponding log-likelihood function for Eq. 4,

10∑

j=1

n j∑

i=1

ci j

[
log(k j ) − k j log(θ j ) + log

(∫ ti j

ti j−0.5
sk j−1 exp

(−s

θ j

)k j
ds

)]

−(1 − ci j )

(
ti j
θ j

)k j
. (26)

– The corresponding log-likelihood function for Eq. 5,

10∑

j=1

n j∑

i=1

ci j log

(
γ

(
ti j
θ j

, k j

)
− γ

(
ti j − 0.5

θ j
, k j

))

+(1 − ci j ) log

(
1 − γ

(
ti j
θ j

, k j

))
. (27)

– The corresponding log-likelihood function for Eq. 6,

10∑

j=1

n j∑

i=1

ci j log

(
1

2
erf

(
log(ti j ) − μ j√

2σ j

)
− 1

2
erf

(
log(ti j − 0.5) − μ j√

2σ j

))

+(1 − ci j ) log

(
1

2
− 1

2
erf

(
log(ti j ) − μ j√

2σ j

))
. (28)
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– The corresponding log-likelihood function for Eq. 9,

10∑

j=1

{
(ka − 1) log(k j ) − k j

θa
− log(Γ (ka)) − ka log(θa) + (kb − 1) log(θ j )

− θ j

θb
− log(Γ (kb)) − kb log(θb)

+
n j∑

i=1

ci j log

(
γ

(
ti j
θ j

, k j

)
− γ

(
ti j − 0.5

θ j
, k j

))

+(1 − ci j ) log

(
1 − γ

(
ti j
θ j

, k j

))}
. (29)

– The corresponding log-likelihood function for Eq. 10,

10∑

j=1

{
−(log(μ j ) + log(σa)) − (log(μ j ) − μa)

2

2σ 2
a

− (log(σ j )

+ log(σb)) − (log(σ j ) − μb)
2

2σ 2
b

+
n j∑

i=1

ci j log

(
1

2
erf

(
log(ti j ) − μ j√

2σ j

)
− 1

2
erf

(
log(ti j − 0.5) − μ j√

2σ j

))

+(1 − ci j ) log

(
1

2
− 1

2
erf

(
log(ti j ) − μ j√

2σ j

))}
. (30)
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