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7.1 Introduction 

The field of conservation biology is focused on protecting species, and thus 
populations, from declines leading to extinction. This goal is a clear one; how
ever, knowing when a population is in danger of extinction is the tricky first 
step to any process of species protection. To evaluate the conservation status 
of a population, biologists increasingly use a suite of methods collectively 
known as population viability analysis (PVA: Beissinger and Westphal 1998; 
Soule 1987). With these mathematical models, we can use data from a popula
tion to predict whether it is on average declining, recovering, or persisting at 
a fairly constant size. By quantifying variability in population growth and 
decline, these models can also yield predictions of various measures of 
extinction risk, including mean time to extinction and the ultimate probabil
ity of extinction. 

For the most part, traditional methods of PVA involve the use of age- or 
stage-structured matrix models to project populations forward through time 
and to estimate population growth rates (e.g., Crouse et a1.1987; Menges 1990; 
Chap. 6, this Vol.). These models are particularly useful for PVAs, because they 
are buHt upon detailed biological knowledge of a target population and thus 
support sensitivity analyses that can help inform decisions about the life
stages and vital rates on which to focus our time and resources. However, with 
these advantages come heavy data requirements that make proper parameter
ization of matrix models difficult, or at times impossible (Beissinger and 
Westphal1998; Chap. 6, this Vol.). Estimating growth rates for each age or life 
stage of the population is laborious, requiring careful and detailed work to 
enumerate the fates of individual plants - tagging and measuring plants of a 
range of stage classes, and repeatedly revisiting them to estimate transition 
rates for several years. Worse, especially for long-lived species, mortality rates 
are often difficult to estimate accurately with sampie sizes that are adequate 
for the study of growth and reproduction, requiring even larger numbers of 

Ecological Studies, Vol. 165 
C.A. Brigham, M.W. Schwartz (Eds.) 
Population Viability in Plants 
© Springer-Verlag Berlin Heidelberg 2003 



174 B.D. Elderd, P. Shahani, and D.F. Doak 

plants to be followed. Finally, estimating recruitment rates generally requires 
setting up further experimental plots (i.e., seed addition experiments). 
Assembled into a population matrix, these demographie data are extremely 
useful in guiding effective management. However, this utility hinges on pre
existing data being available, or on the resources and time to conduct the fine
scale studies needed to acquire diverse demographic data. This latter situa
tion is most common for plant studies, since few rare plants have been studied 
thoroughly enough to allow a full demographie characterization without fur
ther work. 

Thus, in many circumstances, data limitations severely hamper our ability 
to use the usual demographic approach to PVA. As an alternative to this 
approach, population count data can be used to predict future population tra
jectories and to evaluate extinction risks through the use of diffusion approx
imation PVA models (Dennis et al. 1991). These models are highly useful in 
that the type of data that they require - counts of relative population sizes 
through time - are more commonly available and are easier (though requir
ing no fewer years) to gather when not already in hand. With census data on 
changes in the number of individuals in the population or some subset of the 
population, we can estimate the mean and variance in stochastic growth rate. 
By approximating population growth as a diffusion process, we can then 
make predictions about extinction risk using metrics such as the mean, 
median, and modal times to extinction, the median population size at some 
time in the future, and the ultimate prob ability of extinction (Dennis et al. 
1991; Gerber et al. 1999; Morris et al. 1999; Chap. 6, this Vol.). 

This general density-independent diffusion-approximation (DA) method 
ofPVA,elucidated by Dennis et al. (1991),holds considerable promise as a way 
to rigorously analyze population vi ability when demographic approaches are 
not feasible. However, its usefulness as a conservation planning tool relies 
upon numerous poorly explored factors, including the length of the time 
series available and the reliability of census estimates. Use of this method 
(Nicholls et al. 1996; Lima et al. 1998; Gerber et al. 1999), as well as attacks on 
its utility (Ludwig 1996, 1999; Fieberg and Ellner 2000), have become increas
ingly common but there are still few accessible reviews of the approach or 
syntheses of the method's problems and potential. In this chapter, we will first 
describe the basic DA approach, and then assess the quality of results it pro
vides, evaluating and addressing some of the criticisms that it has faced in 
re cent years. We will also ask how this approach performs when faced with a 
common problem for many plant species, the presence of an important but 
unseen life stage such as seeds in a seed bank. 
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7.1.1 A Genealogy of Count-Based PVA 

The eonstruetion and use of population dynamie models has a long history, 
with many mathematicians and ecologists eontributing advanees and teeh
niques that haveenabled the development of diffusion-based extinetion-time 
models. Here, we present abrief history of some of the work that eontributed 
most direetly to the formulation of the density-independent diffusion-based 
PVA models on whieh we foeus. (We encourage readers who are totally unfa
miliar with these methods and models to skip straight to the next seetion, 
whieh deseribes how to implement the approach.) 

The first stochastie population model that seems to have eontributed sub
stantially to the formulation of eurrent diffusion-based models was devel
oped by FeIler in 1939 (translation appears in Oliveira-Pinto and Conolly 
1982). This model drew attention to the importanee of eonsidering temporal 
variation in birth and death rates for making population projeetions. Later 
models were used to predict extinction probabilities for populations with this 
kind of demographie stochasticity in birth and death rates (KendaIl1949). 

Goel and Richter-Dyn (1974) demonstrated that, for unstruetured popula
tions, such discrete birth-death processes could be approximated by a eontinu
ous diffusion proeess (a random walk approximation with random deviations 
around a central tendeney to grow or shrink), allowing more powerful mathe
matical analyses to bear on the prediction of extinetion risk and timing. Sev
eral diffusion-based models were then developed that incorporated either 
environmental and/or demographie stochasticity into the population growth 
process (Gillespie 1972; May 1973; Capoeelli and Ricciardi 1974; Karlin and 
Levikson 1974; Turelli 1978; Leigh 1981; Tier and Hanson 1981). Three ofthese 
models also included methods to derive extinetion time estimates as a funetion 
of variance in either birth and death rates (Leigh 1981) or population size 
(Capoeelli and Ricciardi 1974; Leigh 1981; Tier and Hanson 1981) and have 
eontributed substantially to the development of diffusion proeess models used 
for PVAs today. 

Parallel to this development of unstruetured models (models that do not 
include age- or stage-based differenees between individuals) to prediet extine
tion times, a rieh literature developed on how stoehastic variation in age-spe
cifie demographie rates would influence the behavior of matrix models (Cohen 
1977, 1979; Tuljapurkar and Orzack 1980; Tuljapurkar 1982). Of particular 
importanee was work by Tuljapurkar (1982) that provided approximations for 
the mean and varianee of stoehastic population growth for matrix models. This 
development allowed the behavior of complex populations, with their stage
specifie demographie rates (including means, varianees, and correlations 
between the variability in these rates), to be summarized in the same measures 
of population change used by simple, unstruetured models for extinetion 
times. 
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Lande and Orzack (1988) used these more biologically realistic age-struc
tured models to test how well unstructured diffusion process models repre
sent the dynamics of populations with complex life histories. In particular, 
Lande and Orzack (1988) showed that the me an and variance in growth rate 
of an age-structured population, approximated by Tuljapurkar's method, are 
similar to the estimates derived if the population is "simplified" and modeled 
by a diffusion process such as that developed by Capocelli and Ricciardi 
(1974). The use of the diffusion process allows for the calculation of all the 
extinction risk measures previously computable for only very simple models 
of population growth. In other words, Lande and Orzack (1988) showed that 
an estimate of overall population dynamics, which can be derived from sim
ple census data (repeated counts of all or part of a population across several 
years), could be used to give good approximations of the growth rate and 
extinction risk of a complex, stage-structured population. 

7.1.2 The Basics of Count-Based PVA 

Although the theoretical developments just described created the potential to 
use DAs of population growth to assess extinction risks from count data, a 
clear set of methods to do so was stilliacking. Dennis et al. (1991) (and simi
lar work by Braumann 1983) made these mathematical advances useful in 
conservation biology by showing how to arrive at unbiased maximum likeli
hood estimates of mean instantaneous stochastic growth rate (fl, the stochas
tic equivalent to r in a deterministic exponential growth model) and variance 
in stochastic growth (a2 ) using simple linear regression methods*. While the 
method of Dennis et al. (1991) ignores the effects of demographic stochastic
ity, it incorporates the gene rally more important effects of environmental sto
chasticity. Of particular importance is that the method can also handle com
plications arising from unequally spaced population counts, as weH as other 
potential problems associated with real data sets (Dennis 1989). These devel
opments have yielded a method of conducting PVA that is straightforward 
and uses the type of data that are most often coHected on species of conserva
tion concern (Morris et al. 1999). 

Using aseries of three steps, the DA method of Dennis et al. (1991) trans
lates population count data into predictions of growth rate and extinction 
risk. As an example, consider a hypothetical population of Hooker's fairybeH 
(Disporum hookeri), a common lily (Table 7.1). Values for fl and a2 are esti-

, In a technical sense, Dennis et al. (1991) uses a diffusion process based on simple Brown
ian motion to describe the population trajectory of a density-independent population 
for which numbers are driven by both an underlying growth rate and by environmental 
stochasticity. The method uses simple census counts and regression analysis to estimate 
the infinitesimal mean and variance of this diffusion process, defined as Il and 02. 
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mated by first transforming census data (dates and population counts) so that 
they can be described by a linear model of the rate of population change 
across a time interval versus the length of the time interval. In particular, raw 
census data should be transformed using the following equations: 

x=~tj-ti 

where Ni and ~ are adjacent census counts from years ti and tj" Thus, x is a 
measure of the time elapsed between two censuses and y is a measure of 
population growth over this interval (Table 7.1). These transformations are 
necessary to equalize the variances in population growth over intervals of 
different lengths, allowing a regression of y on x to fit the assumptions of a 
simple linear model. Indeed, the next step is to perform a linear regression 
of y on x (setting the y-intercept at zero; no growth can occur with no 
change in time), which yields estimates of f/ and 0 2• The slope of the best-fit 
line gives an estimate of f/, and the variance of the individual data points 
about this line gives an estimate of 0 2 (Fig. 7.1; Dennis et al. 1991). From a 
standard regression table, the slope, or f/, is thus given by the regression coef
ficient (or x-coefficient) , and the variance, or 0 2, is given by the mean square 
residual from the regression analysis. For the Hooker's fairybell data, 
f/=O.085 and 0 2=3.22. 

Table 7.1. Census data for a hypothetical population of Disporum hookeri. Here, x is a 

transformation of the time intervals between censuses (x = ~t j - t i ), and y is a log

transformation of population growth between two censuses (y=ln(Nj-N)/x). Note the 
skipped years, which lead to larger values of x 

Year Count 

1982 129 
1983 341 
1985 597 
1986 172 
1989 356 
1990 142 
1991 476 
1992 9 
1994 477 
1995 934 
1996 198 
1997 465 

x 

1.414214 
1 
1.732051 

1.414214 

y 

0.97207 
0.396004 

-1.24442 
0.419986 

-0.9191 
1.209591 

-3.96819 
2.80742 
0.67196 

-1.55121 
0.85377 
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1.5 x = (time between 
censuses, 

more or less) 

Fig,7.1. Linear regression of y on x for Hooker's fairybell data, where y is the log-trans
formation of population growth between two censuses, and x is a transformation of time 
between censuses (equations given in text). The slope of the regression line gives an esti
mate of J1 for the population, and the scatter of points about this line gives a2; these val
ues are then used for further calculations in the diffusion approximation (DA) method 

These values, together with a starting population size and pseudo-extinc
tion threshold (the population size at which the population is considered crit
ically endangered or essentially extinct), can be used to calculate various 
extinction risk measures. Incorporating information on the number of cen
suses and the length of the time series of data (in years) also allows calcula
tion of confidence intervals about the estimates (Dennis et al. 1991). For 
Hooker's fairybell, we chose a starting population size of 465, which was the 
size of the population in the last census, and a pseudo-extinction threshold of 
four individuals. Conducting the various calculations described by Dennis et 
al. (1991) using these values yields an ultimate prob ability of extinction of 
0.76, a mean time to extinction of 56 years, and a median time to extinction of 
13 years for those trajectories in which the population does go extinct. Thus, 
this population has a fairly high prob ability of extinction, and extinction is 
likely to occur fairly soon; if this was a rare species, we might decide to invest 
effort into managing this population for recovery. The full results of the 
approach are best summarized bythe cumulative distribution function (CDF) 
of extinction times (Fig. 7.2). Such a CDF can be used to infer values for mul
tiple extinction measures, such as median time to extinction and the proba
bility of extinction by a given time (100 years, for example). For more infor
mation on how to perform the calculations to yield these extinction risk 
estimates, see Dennis et al. (1991) and Morris et al. (1999).As noted above, the 
method of Dennis et al. (1991) yields not just these best-fit predictions, but 
also confidence intervals around all estimates, allowing careful assessment of 
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Fig.7.2. Cumulative distribution function (CDF) for the probability of extinction for 
Hooker's fairybell. The Une shows the probability of extinction on or before a certain 
time in the future. Here, we present the uncorrected CDF, which asymptotes at the ulti
mate extinction probability for the population (=0.76 in this case). Note that many 
authors present the conditional extinction time CDF, which shows the probability of 
extinction on or before a certain time conditional on extinction ever occurring. These 
conditional CDFs must asymptote to 1.0 

our confidence in the extinction predictions generated by the DA (e.g., Gerber 
et al. 1999). Recent work by Holmes (2001) extended this method by providing 
new estimation methods for DA modeling when observation errors are espe
cially high. 

7.1.3 Problems and Criticisms ofthe DA Method ofPVA 

The minimum amount of data required and ease of parameterization of the 
DA model are major advantages that enable its use in the wide variety of 
situations in which only census data are available. The DA method is thus 
becoming increasingly popular, with rapid growth in the number of studies 
implementing it to estimate extinction risk. It has now been used to assess the 
viability of populations of over 60 different species in published studies (see 
Table 7.2), and many more in unpublished work. Interestingly, almost all of 
these applications have been restricted to mammalian and avian taxa; 
the only exceptions to this that we are aware of are its application to predict 
viability for a single plant population (Knowlton's cactus, Morris et al. 1999). 

Despite this growth in popularity, there are a number of limitations to the 
DA method of PVA. The model assumes that annual population growth rates 
are log-normally distributed (or equivalently, that instantaneous per capita 
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Table 7.2. Examples of uses of the diffusion approximation (DA) method of population 
viability analysis (PVA) in re cent studies 

Species Years Source 
of data 

Mammals 
Alabama beach mouse (2 populations) 7-11 Oli et al. (2001) 
Blue wildebeest 10 Nicholls et al. (1996) 
Cricetidae rodent (Akodon olivaceus) 5 Lima et al. (1998) 
Cricetidae rodent (Phyllostis darwini) 5 Lima et al. (1998) 
Didelphidae marsupial (Thylamys elegans ) 5 Lima et al. (1998) 
Eland 10 Nicholls et al. (1996) 
Giraffe 10 Nicholls et al. (1996) 
Grizzly bear 29 Dennis et al. (1991) 
Impala 10 Nicholls et al. (1996) 
Kudu 10 Nicholls et al. (1996) 
North Pacific gray whale 19 Gerber et al. (1999) 
Perdido Key beach mouse (2 populations) 7 Oli et al. (2001) 
Roan antelope 10 Nicholls et al. (1996) 
Sable antelope 10 Nicholls et al. (1996) 
Tsessebe 10 Nicholls et al. (1996) 
Warthog 10 Nicholls et al. (1996) 
Waterbuck 10 Nicholls et al. (1996) 
White rhinoceros 10 Nicholls et al. (1996) 
Zebra 10 Nicholls et al. (1996) 

Birds 
Breeding birds (35 spp. in the UK) 11-19 Gaston and Nicholls (1995) 
California condor 16 Dennis et al. (1991) 
Central Florida Red-cockaded woodpecker 12 Morris et al. (1999) 
Kirtland's warbier 39 Dennis et al. (1991) 
Laysan finch 20 Dennis et al. (1991) 
Lesser prairie chicken 12 Morris et al. (1999) 
North Carolina Red-cockaded woodpecker 11 Morris et al. (1999) 
Palila 19 Dennis et al. (1991) 
Puerto Rican Parrot 21 Dennis et al. (1991) 
White stork 16 Engen and Srether (2000) 
Whooping crane 51 Dennis et al. (1991) 

Plants 
Knowlton's cactus 11 Morris et al. (1999) 

growth rates are normally distributed) and that the "noise" of environmental 
stochasticity is small, without catastrophes or other large changes in popula
tion growth rates from year to year. However, the distribution that the growth 
rate takes will vary depending upon the biology of the species being studied 
and the range of environmental variation that it faces. In particular, assuming 
that population growth rates should conform to a normal distribution omits 
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the possibility of infrequent years that are catastrophes or bonanzas, which 
can have extreme effects on population dynamics, despite their infrequency 
(Mangel and Tier 1994; Ludwig 1996, 1999; but see Lande 1993 and Mangel 
and Tier 1993 for models that include catastrophes). Second, the model 
assurnes that population growth in one time interval is not correlated with 
subsequent growth. However, in nature it is very common that environmental 
conditions correlate through time - for example, in many parts of the world 
droughts occur in prolonged sequences. Even more basic, the age or stage 
structure of a population provides arecord of recent events that will always 
create some autocorrelation in population dynamics (Lande and Orzack 
1988). Third, the model is density-independent, while either positive or nega
tive density dependence clearly operates for many populations. Elaborations 
of the basic DA approach have been developed that deal with some of these 
problems. These include models that incorporate the effects of density depen
dence (Turchin and Taylor 1992; Turchin 1993; Dennis and Taper 1994; Foley 
1994), catastrophes (Lande 1993; Mangel and Tier 1993), and spatial structure 
(Possingham and Davies 1995). Even though these models guard against 
some of the most obvious problems in the simple DA approach, they do so 
with the cost of heavier data demands and incomplete predictions of extinc
tion-time distribution. Although some of these potential pitfalls have been 
addressed, particularly the use of bootstrapped simulations to provide para
meter estimates for density-dependent populations (Dennis and Taper 1994), 
the limitations and complexity of these methods make them much more dif
ficult to use or interpret with the sparse data usually available in conservation 
settings especially with respect to extinction time estimates. Due to these lim
itations, and given that many threatened species are likely to experience rela
tively density-independent growth, throughout the rest of this chapter we will 
focus solelyon the use and analysis of the basic density-independent DA 
approach, evaluating its ability to accurately predict population growth rates 
and extinction times for plant populations. 

A particular problem in using the DA method for plants is the invisibility of 
most seed banks. The DA method does not require absolute population counts, 
but does presume that a constant fraction of the total population is counted 
each year, so that measures of changes in the observed population accurately 
estimate rates of total population change. However, if a radically different frac
tion of the entire population is uncounted seeds versus counted adult plants in 
each year (as will be true for many annuals, in particular), the resulting esti
mates of population growth rates can be highly inaccurate, potentially skewing 
estimates of extinction risk. The challenges that seed banks may pose to PVA 
have been raised by previous authors (Higgins et al. 2000; Efford 2001; Doak et 
al. 2002; Chap. 6, this Vol.) but thus far, explorations of this issue have left more 
questions than answers. 

While all of these issues are potentially important, it is not clear whether 
any of them doom the utility of the DA model. Like any other model, DA 
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approaches simplify the real complexity of population dynamics, but this 
does not necessarily make them less useful. However, more fundamental 
aspects of the DA model have recently received criticism, calling into quest ion 
the general usefulness of this method for predicting extinction risk. As Lud
wig (1996, 1999) pointed out, it is difficult to know how much variation in 
population growth rate from year to year is due to the effects of environmen
tal stochasticity versus observation error. Ludwig (1999) condemned the DA 
method primarily for this reason, daiming that this problem creates 
extremely wide confidence intervals around extinction risk estimates, render
ing them largely unusable. He also criticized the lack of density dependence in 
the DA model, daiming that this both biases estimates of the population 
growth rate and artificially decreases the breadth of the confidence intervals 
around these estimates (Ludwig 1999). 

Fieberg and Ellner (2000) examined the DA model to determine how much 
data would be needed to derive useful estimates of extinction probability. 
They found that the model's predictions of extinction prob ability over 
100 years are highly sensitive to changes in the mean population growth rate 
(r where r is stochastic population growth on the log scale, with mean fl and 
standard deviation a). Because of this need for accuracy in estimates of r, they 
condude that (even with perfect data) predictions of extinction probability 
can only be reliably made for very short time horizons - 10-20 % of the num
ber of years that censuses were conducted - making the DA model of 
extremely limited value in predicting extinction risk. 

However, the work of other authors counters some of these criticisms. Meir 
and Fagan (2000) explored the impact of observation error in population 
counts in degrading the accuracy of extinction predictions. They partitioned 
this error into two types: bias in measurements (leading to systematic over- or 
underestimates) and random error in measurements. They found that overes
timation bias has little effect on predictions of extinction dynamics, with 
400 % overestimation required to create significant error in predictions of 
extinction prob ability. The patterns for underestimation bias and for random 
observation error are also encouraging; it is only when both the population 
growth rate and the variance due to stochasticity are low that extinction prob
ability predictions may deteriorate in quality. So, for scenarios in which there 
is little risk of extinction (high r), or a high risk of extinction (low rand high 
a), predictions of extinction risk do not suffer when data indudes random 
observation error. However, in more ambiguous cases (low rand low a) we 
may need to be more cautious in our interpretation of model results, as they 
are much more sensitive to observation error. This difference in the results 
obtained by Fieberg and Ellner (2000) and Meir and Fagan (2000) is likely due 
to the specific scenarios that they examined and the questions they asked. 
Fieberg and Ellner (2000) focused on the more ambiguous cases, in which r is 
zero or dose to zero, and ais also low. Meir and Fagan (2000) examined a 
wider range of scenarios, and while they did find results similar to Fieberg 
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and EIlner's for populations with low rand low avalues, they found more pos
itive results for other scenarios. In addition, Meir and Fagan only explored the 
effects of observation error on relative predictive power, and did not examine 
the absolute accuracy of extinction predictions (with or without observation 
errors). 

In a second defense of PVA models, Brook et al. (2000) responded to cri
tiques of Ludwig and others by analyzing the performance of demographic 
stage-structured PVA models, comparing model predictions to the actual tra
jectories of populations after the end of the data collection period used to 
parameterize the models. They found that, for the most part, true population 
trajectories correlate weIl with PVA predictions. This result is encouraging 
and suggests that, at least when comparing a range of populations with differ
ing dynamics, PVA models may do a good job of ranking relative risk or gen
eral population trends. These demographie PVA models, while more compli
cated than DA models, share many of the same simplifying assumptions, and 
these results indicate that these features do not doom the resulting predic
tions to be hopelessly biased or imprecise. 

Taken as a whole, the past literature provides some support for the utility of 
the DA approach, but still suggests that without a long time-series of data the 
predictions of DA models may either be uselessly broad or quite inaccurate. 
However, the analyses that have come to these conclusions have generally 
asked about the exact precision of the model predictions, which is at best a 
poor approximation to the way PVA results are most often, or at least most 
reasonably, used. More often than not, DA models have been used to make 
more qualitative judgements of risk, to assess relative risk of different popula
tions, or to evaluate the effectiveness of conservation efforts on a whole host 
of species in a protected or managed area (Table 7.2). AdditionaIly, efforts to 
ascertain the reliability of the method have only analyzed the forecasting of 
extinction risk based on estimation of fl and a2• In doing so, these approaches 
have overlooked the fact that much of the variability in extinction risk comes 
from differences in initial population size, the third piece of information that 
comes from a set of count data. FinaIly, past work has generally not asked 
about specific life history features that may hin der or aid the utility of the DA 
method. 

Next, we describe the modeling approach that we used to address these 
questions. Unlike past work that evaluates the absolute accuracy of DA esti
mates, we emphasize the comparative use of DA results (which of a suite of 
populations has the highest, and whieh the lowest, growth rate or extinction 
risk?). We also try to better simulate the use of data sets by real practitioners; 
in particular, we include initial population size (the final size of the census 
data available) as a piece of information to be gleaned from census data and 
used to project future risk. FinaIly, we look at the problem of unseen life his
tory stages such as seed banks, that may alter the utility of DA-based PVAs for 
plants. 
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7.2 Methods 

To examine whether the DA approach can provide useful information when 
based upon a reasonable amount of data, we constructed a simulation model 
to compare DA predictions with a known population process. This modeled 
or "true" population is stage-structured and is governed by a density-inde
pendent stochastic transition matrix. All simulations were initiated with 500 
individuals arranged in the stable stage dass vector for the mean matrix of 
that simulation. Both survival and fecundity rates were allowed to vary 
between years according to assigned means and variances. Matrix elements 
involving growth and survival were drawn from a beta distribution (i.e., a 
probability distribution bounded by 0 and 1), and fecundity rates from a log
normal distribution. In all simulations we bounded total survival in each year 
of each dass by 1.0, proportionately rescaling the stochastically chosen matrix 
elements for a stage if their sum exceeded one. The correlations between the 
vital rates of the population were also varied. We report results for simulations 
using a correlation coefficient of either 0.08 or 0.80 between all variables. 

Each simulation consisted of an initial 50-year "past" period, over all or 
part of which census data were collected to estimate future viability, followed 
by a "future" period in which we continued to simulate the population to 
observe its fate. The future period was set at 50 years, or until the population 
hit a pseudo-extinction threshold of four individuals, for all simulations. We 
chose a 50-year time horizon to predict population performance as this seems 
a reasonable period over which to make management decisions and over 
which useful predictions of population health might be possible. 

All simulations reported here are based on survival and fecundity esti
mates for a perennial monocot, Calochortus obispoensis (Fiedler 1987), whose 
estimated vital rates yield a deterministic rate of increase (A) of l.02 
(Table 7.3). To evaluate how weH the DA method can predict extinction risk 
under a range of different circumstances, we tested its performance using 
"true" populations that spanned a range of growth rates but were aH based 
upon C. obispoensis vital rates. To create differing population dynamics, we 
altered both the mean and variance of a single matrix element (a2,2' the sur
vival, without growth, of stage dass 2; Tables 7.3, 7.4). The nine resulting 
matrices differ in both the mean and variability of population growth 
(Table 7.4). In particular, the range of variances used yielded populations that 
differed in their annual dynamics, from populations that experience very lit
tle change in stage 2 survivorship (a2,2) from year to year, to others that expe
rience high variation in stage 2 survivorship between years (with very good 
years and very bad years being more common than "moderate" years). 

Each set of simulations consisted of 5,000 runs using a single combination 
of the mean and variance in a2,2' We varied the number of annual censuses 
upon which viability predictions were made from 5 years to 50 years. To gen-
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Table 7.3. The average matrix(±l standard deviation) for Calochortus obispoensis 
derived from Fielder (1987). The mean and varianee of the a2,2 matrix element (in bold) 
were varied away from these estimated values to ereate simulations with differing 
dynamies (see Table 7.4) 

From stage: 

1 2 3 
0 0 1. 73 (1.493) 

To stage: 2 0.50 (0.490) 0.95 (0.0141) 0.60 (0.346) 
3 0.03 (0.045) 0.03 (0.0141) 0.38 (0.353) 

Table 7.4. Parameters varied faetoriaIly (eensus period, demographie rate, and varianee) 
for eomparing diffusion approximation estimates to model growth rates and extinetion 
times. The A for the average matrix (a) as weIl as the population fl and 0 2 (b, e) are shown 
for aIl eombinations of mean a2,2 and Var(az,z) 

a. 
Meandemo-

Census periods graphie rate 
(years) a2,2 

5 0.8750 
10 0.9314 
20 0.9596 
50 

b. 

Mean Var(a2,2) 

a2,2 0.0002 

0.8750 -0.118 
0.9314 -0.012 
0.9596 0.030 

e. 

Mean Var(a2,) 

a2,2 0.0002 

0.8750 0.072 
0.9314 0.057 
0.9596 0.048 

Varianee 
Var(az,z) 

0.0002 
0.0054 
0.0119 

fl 

Var(a2,2) 

0.0054 

-0.138 
-0.045 
-0.006 

0 2 

Var(a2,) 

0.0054 

0.125 
0.096 
0.083 

A (average matrix) 

0.9605 
1.0074 
1.0314 

Var(a2,) 

0.0119 

-0.156 
-0.065 
-0.022 

Var(a2,) 

0.0119 

0.177 
0.148 
0.143 
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erate the same distribution of population sizes at the junction of the past and 
future parts of the simulations (i.e., the initial population size for predictions 
of future viability), regardless of the census interval, we always simulated 50 
past years, as noted above. Census data were collected for the appropriate 
number of years prior to year 50 of the simulation. For instance, a 5-year cen
sus would be conducted from year 46 to 50 in the simulation whereas a 10-
year census period would indude years 41 to 50. 

During the census interval, the model stores accurate census data for the 
population each year. To estimate the population's growth rate, its prob ability 
of extinction for 50 years, as well as the population's mean, median, and modal 
times to extinction we used the techniques outlined by Dennis et al. (1991). 
These estimates were then compared to the "true" population's behavior for 
each simulation. Note that in estimating extinction risks we used the census 
data not only to calculate fl and aZ, but also to assign an initial population size 
(the final population size censused). 

We also examined whether the DA method can accurately rank the relative 
viability of a suite of populations that do in fact differ in risk. To compare real 
and estimated rankings of viability, we simulated 5,000 sets of nine different 
populations whose growth rates were determined by separate combinations 
of the demographie and variance parameters in Table 7.4. We then used 
Spearman rank correlations to compare the ranks of the estimated stochastic 
population growth rates (fl) with the ranks of the realized growth rates and, 
similarly, the rankings of the predicted median extinction times and the real
ized extinction times. For all populations that did not go extinct during the 
simulation or whose predicted time to extinction was greater than the 50-year 
forecast period, we set extinction time to 51 years before conducting the 
Spearman rank analysis, making these values ties. 

To explore the effect of unseen seed banks on the accuracy of extinction 
risk predictions, we ran further simulations treating the smallest size dass 
(stage 1 in Table 7.3) as an invisible stage that could not be censused. In Calo
chortus obispoensis this smallest stage is in fact composed of small, grass-like 
plants, not seeds, but for our exploration of an unseeable stage, this difference 
is not important. In exploring the effects of an unseeable dass on DA predic
tions, we first used the original parameter estimates from Fiedler (1987). We 
then tested four modifications of the basic matrix that induded: (1) allowing 
persistence of stage 1 individuals by setting al ,I =0.5 and reducing aZ,1 to 0.3; 
and/or, (2) decoupling variations in stage 1 demography from other stages by 
setting correlations between stage 1 rates (al,!' al,Z' and a1,3) and all other rates 
equal to zero. 
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7.3 Results 

7.3.1 Predictions of Population Growth 

We first asked whether the DA method would usually provide the eorreet 
qualitative predietion of population growth or decline. For most simulations, 
the DA provided a reasonable estimate of the "true" struetured population's 
growth rate and thus its health. Figure 7.3 shows the results from a single set 
of population runs using the lowest demographie and varianee rate. Areas in 
the upper right and lower left of the graph, delineated by the gray lines, eorre
spond to regions where the model's prediction and results eoincided. The 
upper left and lower right portion of the graph are areas where the model's 
predietion and results had opposite signs (e.g., the model predieted that the 

0.5 

0.4 

::1. 0.3 

.... 
0 0.2 

C 
0 0.1 .. E 0 

·~ .o. 1 

Q.rl).2 
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« .0.3 

.0 .4 

.0 .5 

I 
, I ..... _ .. ~ 

.0.5 ·0.4 ·0.3 ·0.2 ·0.1 0 0.1 0.2 0.3 0.4 0.5 

True ~ 
Fig.7.3. The 95% eonfidenee interval (CI) ellipses for the approximation of fA- as ealcu
lated bythe diffusion approximation eompared to aetual or"true" fA- realized over 50 sim
ulation years. This plot eontains the results for the mean demographie rate a2,2=0.875 
and its varianee (V2,2)=0.0002. The ellipses show the eombined CIs for the real and esti
mated variation in fA- aeross all simulations. Ellipses are plotted for the 5-year (dotted 
ellipse), lO-year (dashed ellipse) and 20-year (solid ellipse) eensus periods, as is the mean 
(center asterisk) of the simulation. The gray horizontal and vertical zero lines are used for 
referenee; areas within the ellipses in the upper right and lower left of the plots represent 
points where the approximation and Utrue" fA- are equivalent in sign (i.e., either hoth are 
positive or hoth are negative). Thus, these are areas where the model eorreetly predieted 
whether the population is growing or declining 
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population should be growing; whereas the population was aetually dedin
ing). Over the 5,000 replieate runs for all demographie and varianee rates 
used, the me an predieted fl and the mean true (or realized) fl, for the 50 
"future" years of the simulations, were almost identieal (Fig. 7.4). Further
more, the degree of uneertainty (differenee in upper and lower eonfidenee 
limits, or the eonfidenee interval, CI) for estimated fl was eomparable with the 
range of true uneertainty in future population trajeetories (CIs of true fl) with 
even 10 years of data. More important is whether the 95 % CIs of predieted 
values largely eontain values of the same sign as that of the "true" fl, indieating 
good qualitative predictions about long-term population growth or dedine. 
While this predictive power was weak with 5years of eensus data, as the een
sus period inereased, the approximation did a good job of predicting popula
tion growth or dedine, at least when the mean true fl was of large absolute 
value (Fig. 7.4). However, if"true" fl is dose to zero, the DA predietions were 
mueh less reliable (i.e., the signs for the predieted Il and the "true" Il were 
switehed).1t is important to note, however, that over a 50-year future period, 
the true dynamies of these 5,000 populations from the different simulation 
runs range between growth and dedine. Thus, predieting the health of a sin
gle population with fl"':;0 will always be diffieult, not due so mueh to estima
tion problems as to the inherent uneertainty of vaeillating dynamics over lim
ited time horizons. 

The 95 % CIs eneompass all but the most extreme predicted or realized 
population growth rates. In asking about the basic usefulness of forecasting 
using the DA method, it is also worthwhile to eonsider narrower eonfidenee 
limits. In Fig. 7.5, we plotted 50,80, and 95 % CIs for 10 years of eensus data. 
The 80 % CIs for most of our sets of simulations largely eneompass only qual
itatively eorreet values of fl. This was even true for populations that experi
enee a eonsiderable amount of variation; in the simulation with the largest 
varianee, the 80 % CI predietions were essentially all of the eorreet sign. This 
result further supports the utility of the DA method in making qualitative 
assessments of population viability (or the lack thereof). 

7.3.2 Predictions of Extinction Risk 

To examine how weIl the DA predieted extinetion risk, we first eondueted a 
logistie regression of whether or not the population went extinet over the 50-
year "future" (or forecast) period versus the DA predietion of probability of 
extinetion. Before this analysis was done, we examined the histograms gen
erated by the data to verify that the assumptions of the logistic equation 
were not violated (e.g., most of the data points were loeated at either end of 
the distribution (i.e., they eonsisted mostly of ones and zeros)). Onee veri
fied, this analysis was done aeross all demographie and varianee rates and 
repeated for eaeh eensus period. The results show that, over many replieates, 



The Problems and Potential of Count-Based Population Viability Analyses 191 

the DA predicts the probability of extinction reasonably weH (Fig. 7.6). How
ever, it tended to underestimate the prob ability of extinction for populations 
that had an extremely low chance of extinction and overestimate extinction 
rates for aH other situations. Those populations that had low probabilities of 
extinction likely went extinct due to aseries of extremely bad years; this type 
of dramatic or catastrophic drop in population size and a population's sub
sequent extinction were known beforehand not to be weH predicted by DA 
(Dennis et al. 1991). As the probability of extinction rose above 10-20 %, the 
DA yielded more conservative estimates of extinction prob ability for aH cen
sus periods smaHer than 50 years. Again, this inaccuracy is likely to be due 
to the inability of the DA approach to incorporate occasional extreme years 
(with good years having the largest effect in these cases). Not surprisingly, 
as the census period increased, estimated extinction probabilities became 
more accurate. 
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Fig.7.6. The best fit lines of logistic regressions of the predicted prob ability of extinc
tion according to the diffusion approximation versus whether or not the population 
went extinct over 50 years. The one-to-one line represents a perfect fit between "true" 
extinction probability and forecasted extinction prob ability. Areas above the one-to-one 
line represent regions where the model underestimated probability of extinction (i.e., 
liberal estimates) and areas below represent regions where the model overestimated the 
prob ability of extinction (i.e., conservative estimates) 
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Since the DA can, on average, give realistic estimates of extinction proba
bilities, how weH did it predict extinction tim es? To answer this, we regressed 
the mean, median, and modal times to extinction for aH populations that went 
extinct during the forecast period of the model against the "true" time to 
extinction. Although none of these three measures of extinction time relate 
exacdy to the time to extinction, which is conditional on extinction occurring 
over a short time horizon (50 years for our simulations), they are the three 
most widely used measures of risk estimated from the DA method. The 
median and modal extinction time estimates were able to account for a con
siderable amount of variance in extinction times (Fig. 7.7). The amount of 
variance explained increases and asymptotes as the census period increased. 
However, the mean time to extinction, except when estimated with 50 years of 
census data, accounted for litde of the variance in time to extinction. Although 
the predicted median and modal extinction times do provide useful estimates 
of extinction risk, it is worth noting that they do not provide good precision 
in estimating the "true" conditional extinction times we observed over our 50-
year time horizon (personal observation). In particular, the median overesti-
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mates, and the mode underestimates, time to extinction. This is not surpris
ing, given the typically skewed distribution of extinction times (Fig. 7.2), but 
it does show that the simple summary statistics derived from a DA analysis 
should be interpreted cautiously when assessing the likely timing of extinc
tion over short time horizons. 

7.3.3 Ranking Relative Risk 

In addition to estimating fl for single populations, DA predictions can be used 
to rank populations with respect to the amount of extinction risk they face, 
relative to other populations. To gauge ranking accuracy, we correlated the 
ranking of "true" versus estimated flS for sets of nine simulated populations, 
each with different combinations of the me an and variance of matrix element 
az,z (Table 7.4). Correlation between true and estimated rankings were posi
tive for over 75 % of samples for even a 5-year census period and increased 
with greater lengths of census data (Fig. 7.8A). Although these correlations are 
often far from perfect, they do suggest that even moderate amounts of census 
data can be useful in ranking populations for the potential for future growth. 
We replicated these simulations using a low correlation in variation of differ
ent demographie rates; the resulting decline in population variability sub
stantially improves the power of the DA predictions to rank populations 
(Fig.7.8B). 

If the same correlation analysis is conducted for predicted and actual time 
to extinction (calculated from fl, 0 2, and initial population size), the correla
tion between the DA estimates and "true" outcomes is much stronger 
(Fig. 7.9). Even with high correlations in matrix element variation and only 
5 years of census data, the median rank correlation is over 0.75. With increases 
in census period or decreases in covariance, the DA method's ability to cor
rectly rank extinction times of populations increased even further. These 
results emphasize that the realistic use of initial population size estimates, 
along with fl and cf2, provides the DA method with considerable predictive 
power, even over time spans much longer than the period over which census 
data were collected. 
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7.3.4 Effects of an Unseen Stage 

For all of the simulations of different life history variations, the predictive 
power of the DA method was virtually unaffected by the ability to census indi
viduals in the smallest size dass. The different variants of the size dass vital 
rates resulted in stable size dass distributions that induded anywhere from 14 
to 18 % of the population as part of the "seed bank." Thus, even if up to one 
sixth of the population could not be censused, there was little difference in 
estimates of population health between simulations in which we were able to 
census this dass versus those in which we were not. In particular, we found lit
tle change in the ability to rank either f1 or extinction times when unable to 
census the smallest dass (Fig. 7.10). This result held true for simulations run 
with the original transition matrix, and also for those in which stage 1 sur
vivorship was increased, regardless of the level of correlation in demographic 
rates for seed bank stage with those for the other stages. Even making dass 1 
both perennial and uncorrelated in temporal variation with other stages did 
not change the lack of effect of seeing this stage (Fig. 7.10C). This rather sur
prising result seems to arise due to the high annual survivorship of the adult 
dass (stage 3), which makes the observed part of the population the most sta
ble. Clearly, this result needs to be tested for a range of different life histories, 
but it echoes Meir and Fagan's (2000) analysis, showing that observation 
errors of population size must be large before they markedly degrade DA pre
dictions. 

7.4 Conclusion 

Overall, our results indicate that in many circumstances the DA method can 
provide useful information for PVA practitioners with reasonable amounts of 
data. In particular, the DA approach does a good job of estimating f1 when the 
true value is not near zero. In contrast, populations with a discrete growth rate 
near one (i.e., f1 is near zero) will be highly affected by the vagaries of envi
ronmental stochasticity. In these situations, it would be difficult to have much 
faith in any prediction of f1 or extinction probability, as the fate of the popula
tion will largely be determined by difficult-to-estimate variability. If one 
examines the confidence intervals around the mean (e.g., Fig. 7.4), it becomes 
evident that the predictive ability of the model should be called into question 
in these situations. Some critics of the DA method have focused on this weak
ness by analyzing populations with growth rates at or ne ar equilibrium 
(Fieberg and Ellner 2000). For these situations, the DA method is indeed a 
poor predictor, although other methods are likely to be just as bad (Ludwig 
1996, 1999; Chap. 6, this Vol.). It is also important to emphasize that part of 
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this poor predictive power arises from the inherent uncertainty of short-term 
outcomes when environmental variability is large. The key question to ask in 
a PVA is usually not what the true, long-term population behavior is, but 
rather what the range of likely outcomes is over a defined time horizon. With 
fl dose to zero, these outcomes can span a wide range of values, just as can the 
estimated values (Fig. 7.5). 

The DA method also does a reasonable job of predicting extinction risk. 
However, the estimates of extinction provided by the DA method are overly 
optimistic for populations that have an overalllow probability of extinction. 
Thus, our results confirm that the method contains limitations when trying to 
forecast rare extinction events (Dennis et al. 1991). We also found that with 
limited data the method overestimates extinction probabilities for popula
tions that have a high prob ability of extinction. Thus, the DA method overes
timates extinction risk for the most endangered populations; however, it is 
also with regard to these populations that biologists would most want to be 
conservative or cautious in developing management strategies. 

Not surprisingly, with more census data, predictions of extinction proba
bility become more accurate. However, our results indicate that useful fore
casts can be made without enormous amounts of data. Generally, 10 years of 
census data were sufficient to yield useful predictive power about extinction 
times (Fig. 7.7). This finding supports the results of Gerber et al. (1999), who 
studied the quality of DA predictions achieved with various amounts of cen
sus data, as compared with the known population dynamics from further cen
suses, for the North Pacific humpback whale. They found that predictions 
made with 11 years of census data were substantially more accurate than pre
dictions made with even 8 years of data, but that the quality of predictions did 
not improve drastically when informed by further years of census data. 
Although their study focused on a rapidly recovering population with very 
low temporal variation in population growth, our results suggest that such 
limited data are useful in many other circumstances as weIl. 

By far, our strongest results were from the ranking of the relative popula
tion growth and risk of extinction among a suite of populations with varying 
growth rates and variances. We found that the rankings of estimated fl values 
correlated reasonably weIl with the true rankings. More impressively, rank
ings of extinction predictions correlated extremely weIl with true rankings of 
extinction times. This result is in sharp contrast with more dismal analyses of 
the DA method (Ludwig 1996,1999; Fieberg and Ellner 2000). The explanation 
for this difference is partly due to our emphasis on the ranking of risk rather 
than predictive precision. In addition, by tailoring our simulations dosely to 
the real use of census data, we induded the powerful effects of initial popula
tion size in determining extinction risk, which previous analyses have not. 

However, in interpreting our ranking results, it is important to bear in mind 
the wide range of fl and 0 2 values of the populations we were ranking 
(Table 7.4). Attempts to rank the viability of populations with much more 
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similar dynamics will inevitably be less successful. Still, of the nine popula
tions used for our ranking of relative risk, there were only three different 
deterministic growth rates, with the rest of the differences generated by 
changes in variability. Thus, our results show that the DA method can not only 
differentiate between populations that on average grow or decline, but also 
between populations that experience different amounts of variation. Critics 
have charged that the DA method can not reasonably assess population health 
when confronted with a range of environmental stochasticity. In contrast, we 
found that the method is robust, at least in assessing the relative health of a 
group of separate populations. 

Although the DA approach is being used with increasing frequency 
(Table 7.2), it has rarely been applied to plants (but see Morris et al. 1999). The 
biggest challenge in applying the method to plant populations seems likely to 
be that population censuses will often not include all stages of the population, 
due to the difficulty of surveying a plant population's seed bank or other small 
stages (e.g., the cotyledon stage of C. obispoensis). Although limited to only 
one life his tory, our results indicate that the DA method can still perform 
quite weIl with this limitation. In this regard, our results confirm Meir and 
Fagan's (2000) finding that observation errors have to be fairly large before 
influencing DA predictions. Still, our robust findings are probably driven by 
the high adult survivorship of the particular life history we used. Not includ
ing the smallest size class in census counts is certain to have much greater 
effects on the quality of viability predictions when the larger (adult) size 
classes are less long-lived. Thus, the method should be used with great cau
tion, if at aIl, for short-lived perennials or annuals that have seed banks con
taining a large and vacillating fraction of the population's individuals. 

It is important to emphasize that we base our assessment of the "useful
ness" of the DA method not on a 0.95 prob ability of rejecting hypotheses 
about population growth, but upon a looser standard more appropriate to 
conservation management. In particular, the ability of the DA approach to 
more often than not predict the right qualitative dynamics of a population, 
even with considerable uncertainty (Figs. 7.4, 7.5) indicates that while short 
periods of census data are not sufficient to make definitive conclusions, they 
do form a firm enough basis to improve conservation assessment. In this 
sense, we are highly pragmatic (or even optimistic) in our evaluation of the 
DA method and its potential to improve PVA and conservation planning. 

In summary, the DA method is a useful PVA tool that can inform decisions 
ab out the best targets for conservation efforts. Ecologists have developed a 
number of models in order to understand the interaction of birth and death 
processes that lead to either a population's growth or its decline. In particular, 
matrix models and their many elaborations have become standard tools for 
PVA analysis (Chap. 6, this Vol.). However, these models require large amounts 
of data. As an increasing number of plant and animal populations have 
become threatened with extinction, the time available to collect the necessary 
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field data for parameterizing the more complex models is not necessarily 
available. The DA method employs a relatively simple technique to use count 
data to estimate population growth and extinction risk. For plants in particu
lar, basic counts of individuals are easy and inexpensive to acquire, making 
DA methods an especially appealing way to utilize past data as weIl as current 
data from ongoing monitoring pro grams. While it is important to recognize 
the limitations and uncertainties in the results obtained from the DA method, 
we believe that it can serve a very useful function in the assessment of viabil
ity. Very short time-runs of data will not allow precise analyses of population 
dynamics, but even modest amounts of data can provide good estimates of 
qualitative dynamics and especially of relative risk of extinction. With its 
modest data needs and potential to substantially improve the biological basis 
of conservation decision-making, the DA approach to viability assessment 
deserves further use and development as an important conservation tool. 
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