
Supplemental Information

The SEIR Model

Here we present the full Susceptible-Exposed-Infected-Removed or “SEIR” model used

to derive eq. 3 in the text. For the fall armyworm and other baculovirus-driven systems,

disease transmission occurs during the larval stage. The model describes disease

transmission over the course of an epizootic and allows for the observed delay between

infection and virus production via larval death. The equations take the form:
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dEi

dt
= mδEi−1 −mδEi, i = 2, . . .m, (S3)

dV

dt
= mδEm − µV. (S4)

S is the density of uninfected or “susceptible” hosts and V is the density of virus-killed

cadavers, as in the main text. Heterogeneity in disease risk can be adequately described by

the first two moments of the distribution of transmission rates (Elderd, Dushoff & Dwyer

2008). β̄ and K are derived from these moments. The above equations assume that

transmission rates follow a probability distribution with mean β̄ and coefficient of variation

K. Differences in risk are captured by the disease transmission rate scaling factor,
[
S(t)
S(0)

]K2

.

The time delay between baculovirus infection and death is represented by the exposed class

Ei, which is divided into m classes, such that the average speed of kill is 1/δ. The rate at

which individuals move from one class to the next is mδ (Keeling & Rohani 2008). Once

larvae reach the final exposed class m, they die and become infectious cadavers V . Cadavers
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break down at rate µ. The above equations assume no reproduction in the susceptible class

and describe disease transmission in a single generation. In the main text, eq. 2 is eq. S1.

Calculating the AICc

To calculate the small sample correction to the AIC or the AICc we used:

AICc = −2L(θ) + 2K

(
n

n−K − 1

)
. (S5)

Here L(θ) is the log likelihood of the model parameters θ given the data, n is the number of

experimental units or plots and K is the number of parameters in the model (Burnham &

Anderson 2002). To calculate the log likelihood, we assumed that the error in the model

followed a binomial distribution, as is appropriate for infection data. After fitting the

model to the data, the residuals were examined for outliers, which were removed. Because

binomial data are often over dispersed, we calculated the variance inflation factor

(McCullagh & Nelder 1989). The metric was always much less than four, which means that

overdispersion is not a factor in the data and should be of no concern in the analysis

(Burnham & Anderson 2002).

To calculate the weights associated with each AIC score, we first calculated the ∆AICc

where:

∆AICi = AICi −min(AIC) , (S6)

Note we have dropped the small sample correction term c for convenience. Here i is the

model being considered and min(AIC) is the minimum of all AIC model scores. The ∆AIC
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scores were then used to calculate the associated AIC weights:

wi =
exp(−0.5∆AICi)

ΣR
r=1exp(−0.5∆AICr)

, (S7)

where wi is the weight of evidence for model i given all R models.
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Table S1: rmANOVA results for the effects of Open-Top Chambers (OTCs) on daytime and
nighttime temperatures during the field transmission experiments showing the degrees of
freedom (df), the F-statistics, and the associated P-value. Daytime is defined as between 10
am and 4 pm. Nighttime is defined as between 10 pm and 4 am. Degrees of freedom differ
among experimental trials based on the length of the experiment and the number of iButtons
used.

Factor df F P

Day
October 2010

OTC Effect 1,4 15.19 0.0176
Time 1,16 44.34 < 0.0001

OTC*Time 1,16 0.07 0.7928
July 2011

OTC Effect 1,4 17.84 0.0134
Time 1,4 13.76 0.0207

OTC*Time 1,4 0.15 0.7226
September 2011

OTC Effect 1,4 8.03 0.0472
Time 1,4 1.85 0.2451

OTC*Time 1,4 0.06 0.8148

Night
October 2010

OTC Effect 1,4 3.63 0.1293
Time 1,16 32.07 < 0.0001

OTC*Time 1,16 0.00 0.9463
July 2011

OTC Effect 1,4 3.25 0.1456
Time 1,4 0.00 0.9867

OTC*Time 1,4 1.11 0.3524
September 2011

OTC Effect 1,4 21.50 0.0098
Time 1,4 1526.19 < 0.0001

OTC*Time 1,4 28.93 0.0058
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Table S2: rmANOVA results for the effects of Open-Top Chambers (OTCs) on daytime and
nighttime humidity during the field transmission experiments showing the degrees of freedom
(df), the F-statistics, and the associated P-value. Daytime is defined as between 10 am and
4 pm. Nighttime is defined as between 10 pm and 4 am. Degrees of freedom differ among
experimental trials based on the length of the experiment and the number of iButtons used.

Factor df F P

Day
October 2010

OTC Effect 1,4 0.11 0.7517
Time 1,16 4.02 0.0623

OTC*Time 1,16 1.48 0.2408
July 2011

OTC Effect 1,3 0.69 0.4665
Time 1,3 2.69 0.1992

OTC*Time 1,3 0.72 0.4587
September 2011

OTC Effect 1,2 9.82 0.0885
Time 1,2 15.99 0.0572

OTC*Time 1,4 1.56 0.3374

Night
October 2010

OTC Effect 1,4 0.07 0.8083
Time 1,16 4.24 0.0563

OTC*Time 1,16 0.01 0.9441
July 2011

OTC Effect 1,4 3.25 0.1456
Time 1,4 0.00 0.9867

OTC*Time 1,4 1.11 0.3524
September 2011

OTC Effect 1,2 0.12 0.7579
Time 1,2 1.88 0.3043

OTC*Time 1,2 0.12 0.7579
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Figure S1: Open-top chamber (OTC) used to raise temperatures in the field experiments. In
the center of the OTC, a single soybean plant was placed. The plant was enclosed in a mesh
bag to prevent larval escape.
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Figure S2: The effect of current and 2099 projected July average temperature on the mean
feeding rate (± 95% confidence intervals) of fourth instar larvae.
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Figure S3: Mean (± 95% confidence intervals) of A) time to pupation and B) weight at
pupation for fall armyworm larvae raised under current and 2099 projected July average
temperatures.
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