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Bayesian Methodology

The general expression for the posterior probability distribution given in Eq. 6 for population-

level differences in R0 was adjusted to reflect model specifics for each candidate model (Table

2). For example, Bayes’ theorem took the following form for the population-level difference

model (Model 3, Table 2):

P (R0,EA/NA, Ri, σ
2
Ri,EA/NA

, α, γ, µEA/NA, aEA/NA, bEA/NA, σ
2
EA/NA|data) ∝ π(R0,EA/NA)π(Ri) × (S1)

π(σ2
Ri,EA/NA

)π(α)π(γ)π(µEA/NA|aEA/NA, bEA/NA)π(aEA/NA), π(bEA/NA), π(σ
2
EA/NA)×

L(R0,EA/NA, Ri, σ
2
Ri,EA/NA

, α, γ, µEA/NA, aEA/NA, bEA/NA, σ
2
EA/NA|data) .

Here the notation EA/NA indicates whether the population was of European/African (EA)

or Native-American (NA) descent. This population-level model accounts for overall differ-

ences in R0 and σ2 for Native-American and European/African populations, as is true of all

models examined. It also accounts for population-level differences in reproductive rates of

spread Ri. The population-level model was constructed for both the homogeneous (Eq. 1 –

4) and heterogeneous (Eq. 8 – 9) SEIR models.

For the homogeneous SEIR model incorporating population-level differences, the prior

distributions are given as follows:

Ri,EA ∼ LN(R0,EA, σ
2
Ri,EA

) , Ri,NA ∼ LN(R0,NA, σ
2
Ri,NA

), (S2)

R0,EA ∼ LN(mEA, σ
2
R0,EA

) , R0,NA ∼ LN(mNA, σ
2
R0,NA

),

1/σ2
Ri,EA

∼ Γ(mean = 1, var = 0.1) , 1/σ2
Ri,NA

∼ Γ(mean = 68.5, var = 13.7)

σ2
EA/NA ∼ U(0, 1e6),

α =
1

α1 + α2

,

α1 ∼ Γ(mean = 2.6, var = 0.6) , α2 ∼ Γ(mean = 12.3, var = 6.1),

1/γ ∼ Γ(mean = 16.0, var = 8.0),

µEA ∼ Be(aEA, bEA) , µNA ∼ Be(aNA, bNA),
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aEA

aEA + bEA

∼ Be(3, 17) ,
aNA

aNA + bNA

∼ Be(4, 4.5),

aEA ∼ Γ(mean = 30, var = 150) , aNA ∼ Γ(mean = 4, var = 4).

Here the hyperparameters on the fatality rate are aEA, bEA, aNA, and bNA, which differed

between European/African and Native-American populations. LN, U, Exp, Γ, and Be

denote log-normal, uniform, exponential, gamma, and beta distributions, respectively.

We chose an informative prior on the inverse of the variance (i.e., the precision), 1/σ2
Ri,EA/NA

,

due to potential problems with traditional “non-informative” gamma distributed priors given

relatively small sample sizes (Gelman 2006). However, this choice did not have a large effect

on the posterior estimates of the R0 or Ri. For populations of European/African descent,

the prior median along with 95% central interval of the variance was 1.03 (0.586, 2.087)

and the posterior was 0.88 (0.520, 1.600). Thus for these populations, there was overlap

between the prior and the posterior. For the Native American populations, the prior median

along with 95% central interval for the variance was 0.01 (0.013,0.016) and the posterior

was 0.50 (0.341, 1.635). While the prior was informative, especially in the lower range of

the variance, the prior distribution was relatively flat across other parts of the likelihood

surface. Also note that these priors had little effect on the posterior distribution of Ri across

European/African and Native American populations as shown by the marginal posterior

distributions of Ri values between populations in Figs. 4 and 5.

Additionally, we performed a sensitivity analysis by using a more diffuse exponentially

distributed prior for the inverse variance with the rate parameter equal to one. The median

(95% central interval) for the prior on σ2
Ri,EA/NA

was 1.44 (0.272, 39.594). The associated

posterior estimates for σ2
Ri,EA

were 0.46 (0.180, 1.633) and for σ2
Ri,NA

were 0.61 (0.245, 1.901).

Note that the posterior estimates using this prior overlap with the estimates using an infor-

mative prior. As with the informative prior, this more diffuse prior had little to no effect on

the median and 95% credible intervals of R0 or any Ri. It seems that the original informative

prior has little impact on the reported results and conclusions.

For the homogeneous SEIR model incorporating spatial correlation, the prior for Ri,NA

from equation S2 needs to be slightly modified and additional structure added. These changes
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can be expressed mathematically as,

Ri,NA ∼ MVLN(R0,NA, σ
2
Ri,NA

Ψ) , (S3)

Ψ ∼ Exp(−dD) ,

d ∼ Exp(500) ,

where Ψ represents the 8 × 8 dimensional variance-covariance matrix which specifies the

pairwise spatial correlations between Ri parameters for each pair of Native-American pop-

ulations which decays exponentially with distance. D is a normalized geographic distance

matrix between these populations (Fig. 1). MVLN denotes a multivariate log-normal dis-

tribution.

Markov chain Monte Carlo (MCMC) sampler

The posterior distribution for non-linear compartmental models is usually not available

in closed form. One way to approximate the posterior probability density for the model

parameters is via sampling-based methods, such as Markov chain Monte Carlo (MCMC). To

use this approach, we evaluated the likelihood using an automatic second- and third-order

pair step-size Runge-Kutta-Fehlberg integration method algorithm (Matlab; Mathworks,

Natick, MA). The state variables in the SEIR model change smoothly over time (Anderson

and May 1991) and modern integration methods perform well with such equations (Kreyszig

1993). Due to the complexity of the likelihood, however, the posterior distribution can only

be formulated up to the proportionality constant and must be evaluated point-wise. We

therefore used the Monte Carlo approach to obtain the approximate posterior distribution by

generating samples from the posterior. To that end, we followed standard practice in using

an MCMC algorithm that replaces each multi-dimensional random draw with a sequence

of single-parameter or lower-dimensional draws (O’Neill and Roberts 1999). We ran five

separate chains that differed in their initial starting conditions over 110,000 iterations. We

assessed convergence using standard criteria (Brooks and Gelman 1998, Geweke 1992) after

the chains had been trimmed of 10,000 iterations and the autocorrelation of the draws had

been assessed. After confirming convergence (Fig. S4), we combined the chains for each of

the models to generate a sample from the posterior distribution (Table 2).
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Unexplained Variation

Socio-demographic differences between populations are almost certainly part of the reason

why the model with population-specific basic reproductive rates Ri describes the process

more adequately than the model with a single, average basic reproductive rate. These

differences, however, are responsible for only some of the variability among epidemics, and

it is reasonable to expect that there will still be some unexplained variability present.

The main reason for this lies in the fact that epidemics are stochastic processes, and

will differ from instance to instance - from population to population, from year to year, etc,

beyond what we can attribute to effects of measured variables. This stochasticity of epidemics

is one of the reasons why we see the variation between epidemics in different populations,

and that variation is especially visible in smaller populations. Accordingly, it is not just

the “explainable” differences that are driving the variability in the basic reproductive rates;

some variability will always be present even after we account for the explicit differences,

simply due to the stochastic nature of epidemics.

Variation between different instances of epidemics, even those resulting from the same

contagion, is natural. This is particularly true when epidemics are occurring in different

communities, such as missions, where the spread of contagion is guided by different demo-

graphics (e.g., age structure), environmental factors (e.g., availability of food and water)

or social-mixing differences (e.g., differences in social norms or hierarchies). Consequently,

having a flexible model that allows epidemic characteristics to vary from population to pop-

ulation is paramount. In particular, assuming that a single R0 would be sufficient to describe

transmission in all populations would be näıve.

The lack of fit between the model and the data thus cannot be assumed to be due solely

to observation error. The total unexplained error includes the observation error, but also any

error due to the fact that the model is an approximation of reality, regardless of whether it

stems from us ignoring process stochasticity, which includes the assumption that the model

is deterministic.
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Epidemics in Small Populations

To determine whether deterministic models provided a good approximation, we compared

the fit of a stochastic SEIR model to its deterministic counterpart in each population. To

do this, we ran both the stochastic and deterministic models using the best-fit parameter

estimates from the model that assumed inter-population differences in the reproductive rate

of spread Ri (Model 3). The stochastic model used the SEIR framework in combination with

the Gillespie Direct Algorithm (Gillespie 1977, Keeling and Rohani 2008). The Gillespie

algorithm assumes that only one event occurs at a time and so it steps through individual

events in an epidemic as it progresses through the population. Given this assumption, only

one individual can change their status during a single-time step in the SEIR model. The

population is limited to three potential events: 1) an individual moves from susceptible to

exposed; 2) an individual moves from exposed to infected; or, 3) an individual moves from

infected to recovered. The overall probability of an event is the sum of the probabilities of

each of the three types of events.

As in the deterministic model, we first began with a single infected individual. We

then drew an exponentially distributed number to generate the time of the occurrence of

the next event. Next, we drew a uniform random number to determine which of the three

possible events occurred. The simulation was continued until either the end time of the

epidemic data set or no more exposed or infected individuals existed in the population. We

ran the stochastic model for all populations including the Santo Domingo de la Frontera,

a Baja population which had the smallest population size of all the epidemics (Table 1).

To summarize the stochastic runs, we estimated the log of the integrated likelihood (Berger

et al. 1999) by taking the log of the average of the likelihoods (Ross 1997). To investigate

the adequacy of this relatively simple approach to estimating integrated likelihoods, we

repeated the above calculations with an increasing number of simulation runs. The stability

of our results with increased simulations, as well as the unchanged conclusion in Table

S2, seem to indicate that the simple method of estimating the integrated likelihood was

adequate for the data at hand. However, if larger discrepancies were observed, alternative

and more computationally intensive methods (Andrieu et al. 2010, Ionides et al. 2006) would

be preferred.
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The simulations and their 95% probability intervals show that the deterministic model

fits the data well (Table S2 and Fig. S5), but that the uncertainty is far greater in the

stochastic model, as expected. Note that the x- and y-axes in Fig. S5 differ due to population-

level differences in mortality numbers and epidemic length. The pointwise median estimate

clearly follows the deterministic output for all populations. This is not surprising given

that stochastic models for disease outbreaks are recommended for populations under 100

individuals (Daley and Gani 1999). Additionally, the close match of the log of the average

likelihoods for the deterministic and stochastic model lends further support (Table S2) to

the use of the deterministic model in our analysis. The Bayesian analysis, however, could

be undertaken using a stochastic SEIR model as well, and the uncertainty in such a model

would be expected to be even greater than the one communicated in the Results presented

in this paper.
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Tables

Table S1: Effects of R0 priors on the R0 posterior distributions with 95% Credible Intervals for the best-fit

model of population-level differences in R0.

Distribution Prior Intervals Posterior Intervals

Original 4 (0.7, 23.7) European/African – 6.7 (3.17, 14.43)

Native-American – 8.1 (4.11, 15.50)

Optimistic 1.8 (0.13, 24.2) European/African – 6.6 (3.00, 14.53)

Native-American – 8.1 (4.06, 14.32)

Pessimistic 7 (1.9, 26.3) European/African – 7.7 (3.96, 17.13)

Native-American – 8.5 (4.93, 14.96)
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Table S2: Comparison of the log-likelihood for the best- fit deterministic and the log of the average fit of the stochastic model. Numbers in parentheses

are standard errors of the mean (SE). The percent change column shows the difference in likelihood estimates when comparing the deterministic and

the stochastic model. Note that in general the stochastic and deterministic models give very similar results, and that increasing the number of

stochastic realizations (“runs”) had almost no effect on the likelihood score.

1,000 runs 10,000 runs 25,000 runs

Population Deterministic Stochastic Stochastic Stochastic

Epidemic Size Estimate Estimate (SE) Estimate (SE) Estimate (SE) % change †

Santo Domingo de la Frontera, Baja 119 20.72 19.63 (0.095) 19.62 (0.030) 19.61 (0.019) 5 %

Rosalia, Baja Sur 133 12.05 11.23 (0.080) 11.22 (0.025) 11.20 (0.016) 7 %

Saint Lawrence, NM 215 13.01 12.32 (0.067) 12.34 (0.021) 12.35 (0.013) 5 %

San Francisco Xavier, Chihuahua 261 15.76 14.94 (0.084) 14.92 (0.027) 14.93 (0.017) 5 %

Pojoaque, NM 270 9.14 8.52 (0.032) 8.48 (0.011) 8.49 (0.007) 7 %

San Buenaventura, NM 501 15.36 14.34 (0.055) 14.29 (0.018) 14.30 (0.011) 7 %

Santo Domingo, NM 578 13.19 12.41 (0.090) 12.42 (0.028) 12.43 (0.018) 6 %

Santa Clara, NM 627 17.99 17.16 (0.085) 17.19 (0.027) 17.17 (0.017) 5 %

Burford 1,520 24.59 22.81 (0.158) 22.78 (0.050) 22.81 (0.032) 7 %

Warrington 7,000 63.94 63.58 (0.126) 63.61 (0.040) 63.59 (0.025) 1 %

Boston 10,565 47.13 45.19 (0.165) 45.12 (0.052) 45.16 (0.033) 4 %

Chester 12,009 68.81 67.00 (0.052) 67.02 (0.016) 67.03 (0.010) 3 %

Mauritius 37,110 73.95 73.93 (0.036) 72.18 (0.011) 72.21 (0.007) 2 %

† Percent change based on the stochastic estimates from 1,000 runs.

S
9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure S1
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Figure S1: An example of the effects of tight priors on the posterior distribution. A comparison of the mean

infectious period 1/γ distributions given that all epidemics have the same R0 (Model 1) with a model that

assumes that each epidemic has its own value of Ri (Model 3). The solid line in the figure represents the

prior.
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Figure S2
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Figure S2: Histogram of the period up to the fever associated with smallpox (α1) and the period of the fever

(α2) along with the Gamma distribution that best-fits the data cited in the text.
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Figure S3
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Figure S3: Histogram of the prior of mortality using the hyperprior structure for the European/African and

Native-American populations.
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Figure S4: Convergence plots for eight of the main parameters in inter-population disease transmission

model (Model 3, in the main text). The colors in each plot represent the five separate chains run to assess

model convergence. The plots contain all iterations used to estimate the posterior distributions of the model

parameters. Each chain was trimmed by discarding the first 10,000 iterations and thinned by only using

every 1,000th draw.
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Figure S5
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Figure S5: Comparison of the stochastic SEIR model to the deterministic SEIR model for all populations

used in the analysis. The black line represents the deterministic output. The gray dashed line is the

pointwise median value of the 1,000 iterations of the stochastic model. The gray dotted lines are the 2.5%

and 97.5% pointwise bounds of the stochastic model. The gray triangles are the data for each epidemic.

Both the stochastic and deterministic models fit the time series well, especially during the exponential phase

of the epidemic when mortality is rising rapidly. Note the different scales on the y-axis due to differences in

population and epidemic size in each of the outbreaks. The scale also differs on the x-axis due to differences

in epidemic length for each population.
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