

Regulatory and Ratemaking Issues Associated with Cost and Revenue Tracker Mechanisms

National Association of State Utility Consumer Advocates

November 17, 2009

David E. Dismukes, Ph.D. Center for Energy Studies Louisiana State University

- Definition of Tracker Mechanisms
- Commonly-Cited Rationales For Trackers
- Recent Examples
- Tracker Shortcomings
- Questions to Ask in Examining Tracker Proposals
- Examples (Capital Tracker, Inflation Tracker, WNA)
- Conclusions

- Mechanisms that remove cost and/or revenue recovery from base rates to a separate rider or tariff.
- Can be for the collection of new costs not included in base rates or true-ups of revenues or expense items from levels that differ from the test year.
- Recovery typically periodic and more frequent than rate cases.
- While mechanisms can include surcharges and credits they should not be automatically considered "symmetrical."
- Mechanisms originally developed with fuel-cost recovery, but have expanded to a variety of other sales, capital and expense-related changes.

Tracker Mechanism Examples

Tracker Mechanism	Recovery Type	Purpose
Asset Replacement Riders	Capital	Replace aging or inferior assets.
Inflation Riders	Expense	Inflate costs to match general inflation or other measure.
Asset Development Riders	Capital	Facilitate preferenced assets like baseload generation, smart meters.
Energy Efficiency Riders	Expense	Recover energy efficiency expenses as incurred.
Renewable Energy Riders	Capital	Recovery renewable energy development costs, rebates, and/or PPAs.
Environmental Cost Riders	Capital/Expense	Recovery of capital investment or air emission credits.
Weather Normalization Clauses	Revenue	Recovery of changes in sales due to weather.
Revenue Decoupling	Revenue	Recovery of changes in sales due to other factors.
		© LSU Center for Energy St

Commonly-Cited Rationales for Trackers

Rationale	Driver
Volatile and unknown cost changes.	Recent increases in commodity costs and inflation.
Remove disincentives to purse public policy goals.	Energy efficiency, renewables, fuel diversity.
Required by "Wall Street."	Capital crisis/recession.
Required to ensure recovery of revenue requirement.	Changes in UPC, climate change, other "exogenous factors."
Reduce rate cases.	Increase in recent number of rate cases.

ÎLSU
Center for Energy Studies

Selected Examples

Tracker Mechanism	States	Utilities
Asset Replacement Riders	AR, KS, MA, NJ, OR	Centerpoint Energy, Atmos, Bay State Gas Company, NJ Natural Gas, Elizabethtown Gas, Northwest Natural
Inflation Riders	MA (proposed), NE (proposed), CA	National Grid (proposed), SourceGas (proposed), Pacific Gas & Electric
Asset Development Riders	FL, IA, MD (proposed)	FPL (nuclear), PEF (nuclear), IA (coal, allowed, not used), MD (smart grid)
Energy Efficiency Riders	FL, UT, NJ, CA	FPL, Questar, PSE&G, JCP&L, Pacific Gas & Electric, SoCal Gas
Renewable Energy Riders	NJ, MA, MI, VA	PSE&G, JCP&L, National Grid, Detroit Edison, Consumers Energy, VA Electric
Environmental Cost Riders	LA., GA, KS, MS	Entergy Gulf States, Georgia Power, Westar, Mississippi Power
Weather Normalization Clauses	AR, IN, KS, MD, NY, TN, UT	Centerpoint, Indiana Gas, Atmos, Aquila, Chesapeake, ConEd, NYSE&G, Rochester, Piedmont, Questar
Revenue Decoupling	CO, IL, MD, NY, NC, OR, WA	PS Colorado, Peoples Gas, Washington Gas, ConEd, Avista, NW Natural
		© LSU Center for Energy Studies

- While some of these mechanisms are somewhat older in implementation (e.g., WNA, revenue decoupling), others are relatively new (asset development, inflation riders), and others are being modified and expanded (energy efficiency, renewables, environmental cost).
- Another recent theme in tracker proposals is the "multiple proposal" approach being pursued by utilities in various regulatory filings (numerous as opposed to individual tracker proposals).
- Increased adoption by some state commissions has led some utilities to refer to these mechanisms as the "new traditional regulation" or "new chapter" in utility regulation.

Tracker Shortcomings

	Traditional Approach	Tracker Approach
Inconsistency with regulatory practice: "regulatory compact."	Utilities have traditionally been tasked with proposing projects, developing projects, and incurring the cost to develop projects. Afterwards, the utility must prove that the investment is used and useful and developed a reasonable cost.	Utilities would incur costs for projects often no defined ex ante, and recover the costs of these projects, as they are incurred, in rates. Afterwards, regulators and other parties would be required to show that the investments were not needed and the costs were unreasonable.
Inconsistency with regulatory theory: the role of "asymmetric information" in utility regulation.	Regulated firms know their cost structures better than regulators. Thus, best policy is to use regulatory lag, or incentive regulation (benchmarking) to drive utilities to efficient outcomes.	Regulators can easily determine the reasonableness of all capital investments and their costs within a matter of months and can comfortably adjust rates accordingly.

Risk Shifting

Regulatory RiskRatepayers have higher burden to prove investments are imprudent rather than utilities proving that they are prudent.Taken away, or significantly reduced the power of a regulatory disallowance that is long recognized as a powerful regulatory tool in minimizing cost and expense inefficiencies and offsetting potential "A-J" or "X- inefficient" outcomes.Performance RiskRatepayers have higher burden to prove that tracker objectives were not met on sometimes illusive (qualitative) cost and investment decisions.Effectively paying for a service before it has been rendered.Sales RiskRatepayers will make utilities whole for any change in sales regardless of reason (economy, price, weather).Decoupling revenues from sales is likely to lead to a decoupling of costs from revenues in a regulated cost- based industry.	Risk Type	How it is Shifted to Ratepayers	Potential Consequence
prove that tracker objectives were not met on sometimes illusive (qualitative) cost and investment decisions.service before it has been rendered.Sales RiskRatepayers will make utilities whole for any change in sales regardless of reason (economy, price, weather).Decoupling revenues from sales is likely to lead to a decoupling of costs from revenues in a regulated cost-	Regulatory Risk	prove investments are imprudent rather than utilities proving that they are	reduced the power of a regulatory disallowance that is long recognized as a powerful regulatory tool in minimizing cost and expense inefficiencies and offsetting potential "A-J" or "X-
any change in sales regardless of reason (economy, price, weather). sales is likely to lead to a decoupling of costs from revenues in a regulated cost-	Performance Risk	prove that tracker objectives were not met on sometimes illusive (qualitative)	service before it has been
	Sales Risk	any change in sales regardless of	sales is likely to lead to a decoupling of costs from revenues in a regulated cost-

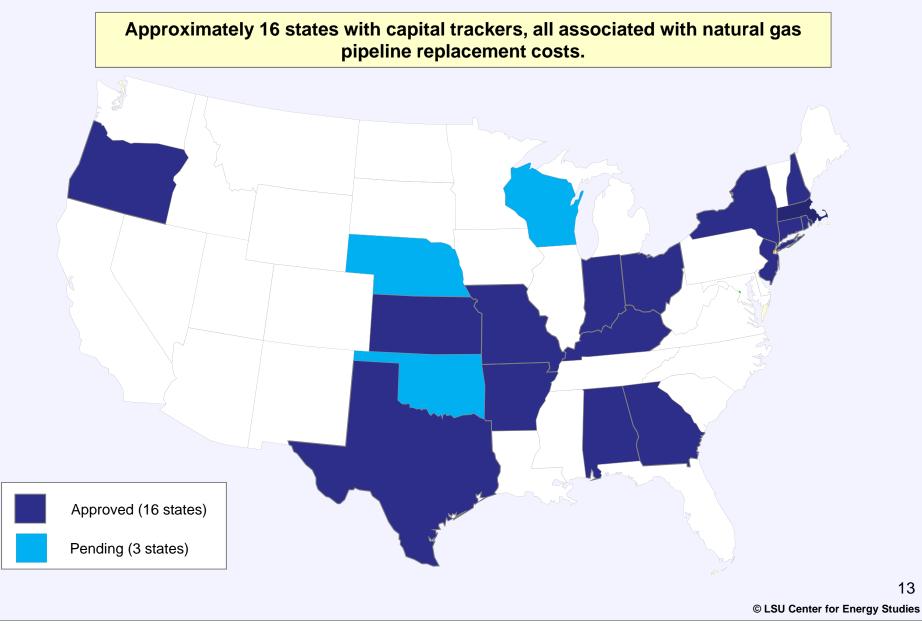
© LSU Center for Energy Studies

• A common utility response is that "risk shifting" is consumer advocate "code" for a confiscatory "takings."

<u>Response:</u> Investors are not promised (guaranteed) a specific level of revenues, a specific return nor are they guaranteed to make whole for inflation or imprudent management actions. Utilities and their shareholders are given a reasonable opportunity (not guarantee) for these returns.

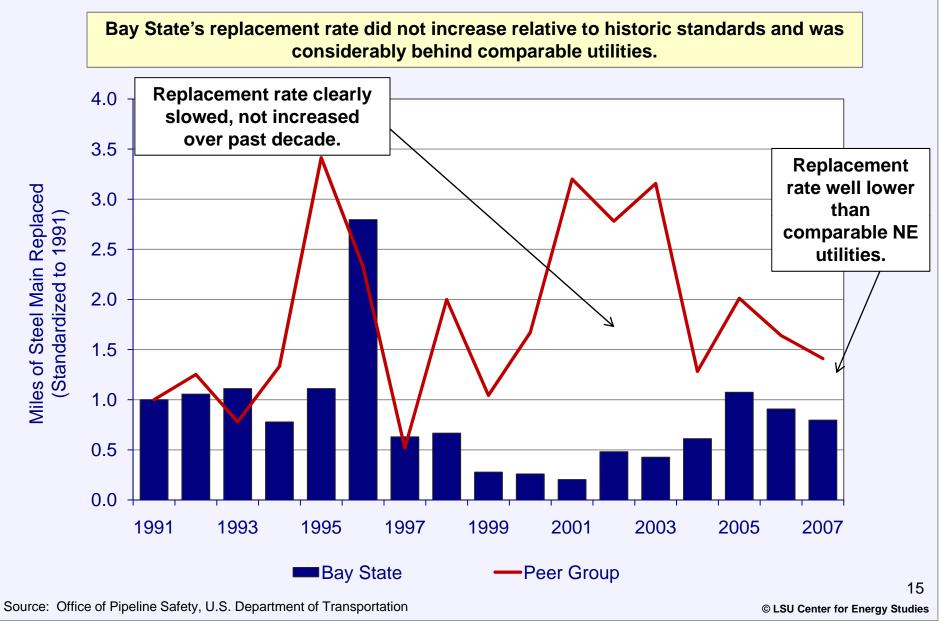
• A common energy/environmental advocates' response is that "risk shifting" is consumer advocate "code" for insensitivity to clean energy policies.

Response: The goal of public utility regulation is to govern the industry in the multi-faceted public interest. Benefiting one aspect of this interest at the expense of the other is counter-productive and inconsistent with economic theory and regulatory practice. No one is arguing "don't pursue clean energy agendas." The argument should be "let's pursue those agendas correctly."


- Is the mechanism allowed by law? (revenue neutral?)
- Is the mechanism well-defined?
- Is the mechanism needed and does it address the problem?
- Are there any performance standards, reciprocity provisions, or other reflections of changes in risk?
- Are there any ratepayer protection mechanisms? (caps, bounds, triggers)
- Are there any alternative approaches that are better suited to addressing the problem?

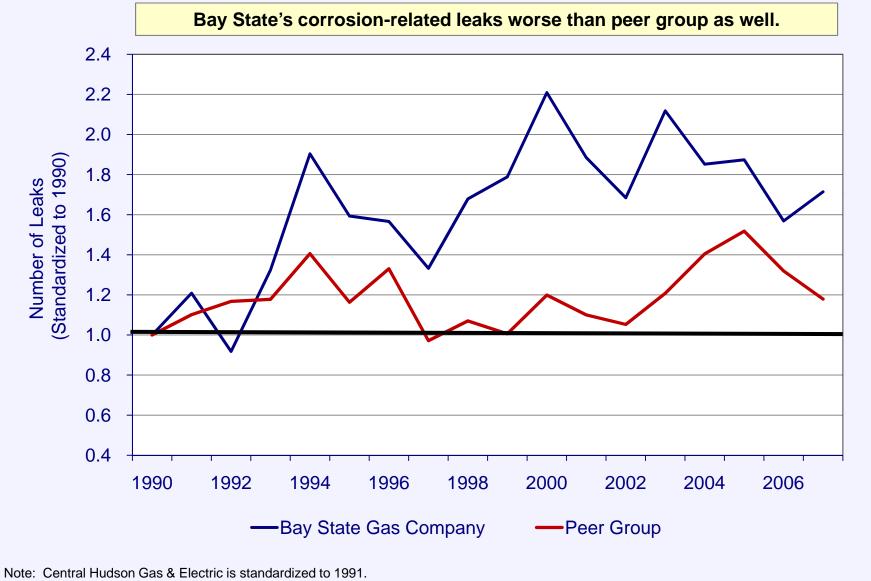
Capital Tracker Analysis

Capital Cost Recovery Mechanisms

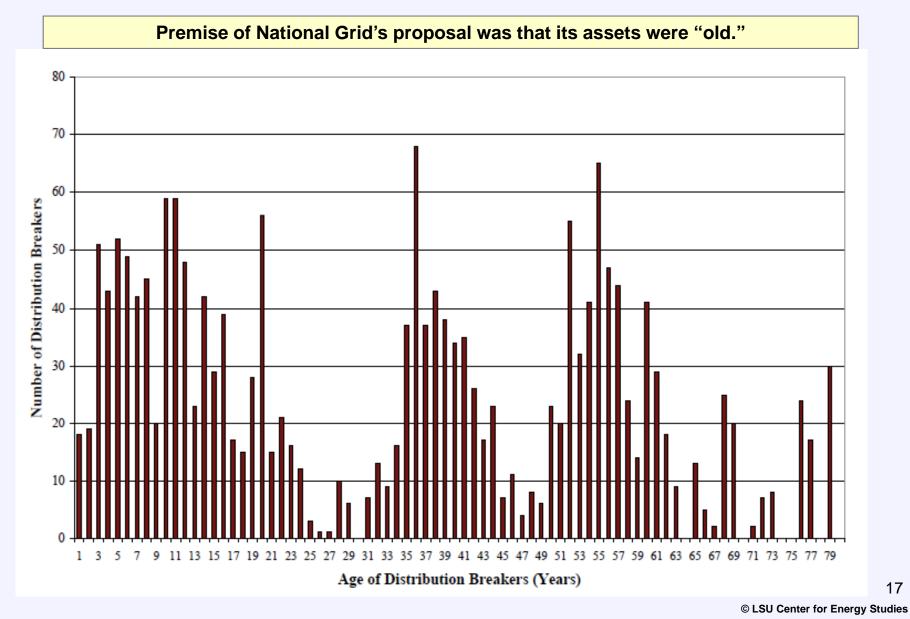


Examples of Tracker Rationales

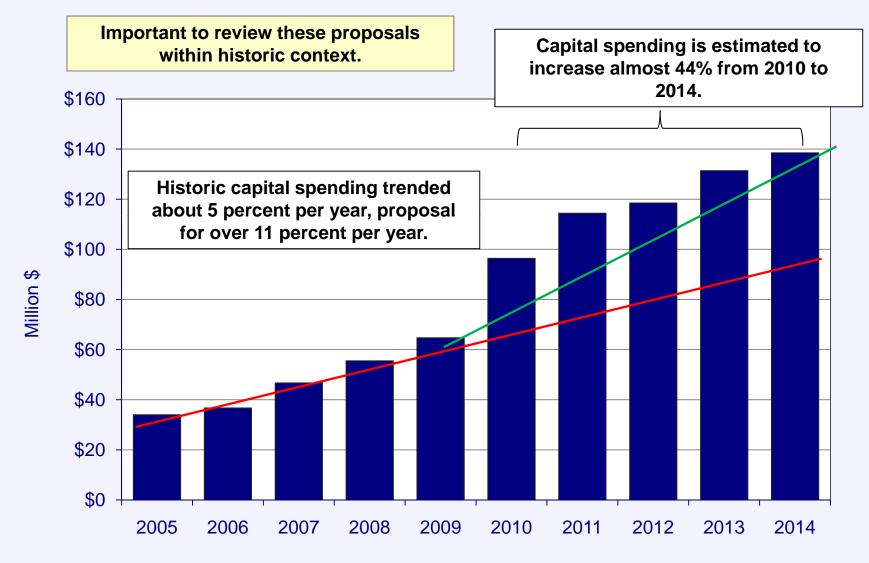
Company	Tracker Proposal	Tracker Mechanics	Rationale
Bay State Gas Company (Docket 09-30)	Targeted Infrastructure Replacement Factor ("TIRF")	Used to recover cost of replacing cathodically unprotected steel mains. Includes a rate cap limiting the annual change in revenue requirement to 1% of total revenues of the prior year. Subject to a prudence review in each annual TIRF filing.	Cost of investment in non-revenue producing plant, has negative impact on Company's ability to recover adequate revenues to provide safe and reliable utility service.
National Grid (Docket 09-39)	Component of "Revenue Decoupling Ratemaking Plan ("RDR Plan") (CapEx Adjustment)	Would be used to adjust revenue requirement - decoupling removes revenues from increasing sales which is a traditional source of revenue to fund capital investment between rate cases.	Needed to replace "aged" assets; and costs for electric power distribution capital projects have increased rapidly in recent years.



Bay State Gas Company Replacement of Steel Mains


Bay State Gas Company Number of Leaks due to Corrosion

© LSU Center for Energy Studies



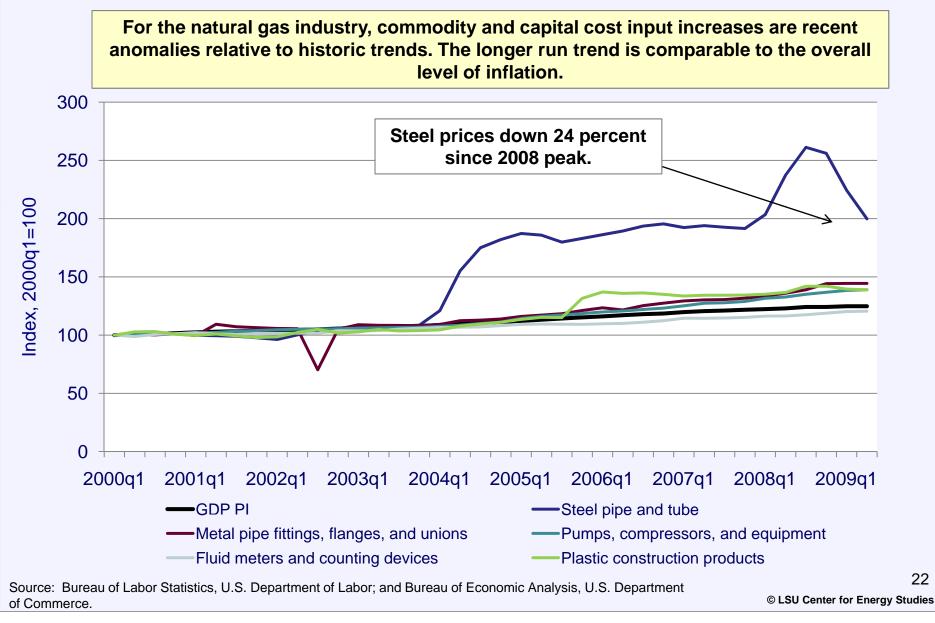
National Grid - Number of Distribution Breakers by Age

National Grid - Asset Replacement and Reliability, Capital Spending

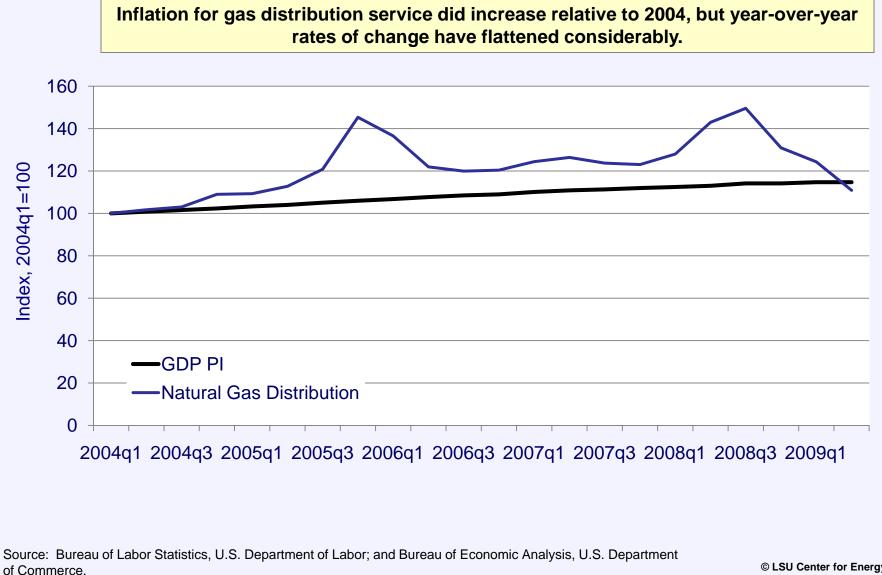
Important to compare asset ages with comparable utilities. In Grid's case, their asset ages were comparable (in some instances younger) than peer utilities.

Results, interestingly, were in direct contrast to their depreciation study which were finding (requesting) longer asset lives, not shorter ones.

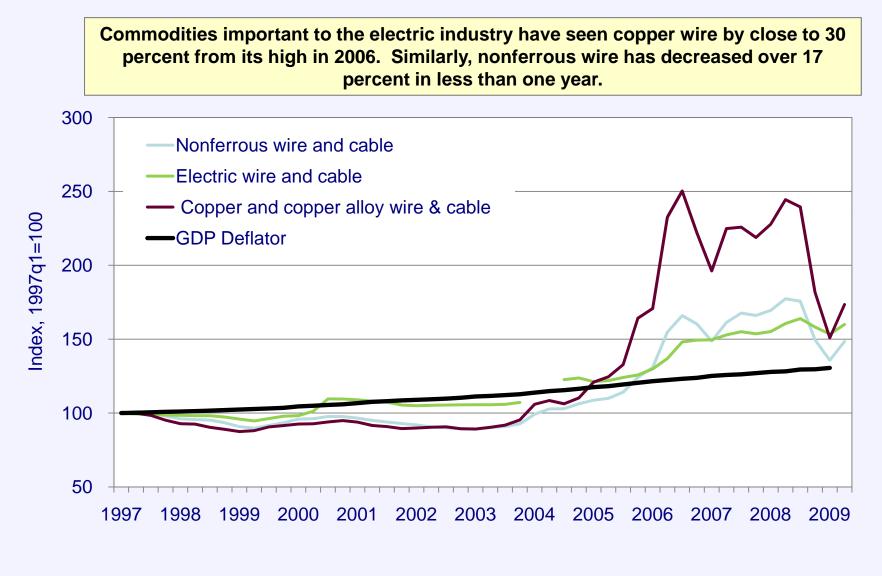
Acco	ount: 361 Structures and Improvements	Station	364 Poles, Towers and Fixtures	365 Overhead Conductors and Devices	366 Underground Conduit	367 Underground Conductors and Devices	368 Line Transformers	369 Services	370 Meters	Total Composite
Average Remaining Life (years):		J								
Massachusetts Electric: Proposed Remaining Life from Depreciation Study Current Remaining Life from Depreciation Study FERC Form 1	36.57 34.80 30.82	54.99 37.88 38.37	26.87 22.80 19.49	29.58 23.87 20.48	33.78 34.87 33.71	35.04 34.08 34.14	20.11 19.62 17.16	30.27 21.97 19.58	15.77 20.68 19.46	31.65 26.94 25.02
Boston Edison (NSTAR) Central Hudson	41.00 63.90 62.42	32.90 36.09 31.08	38.00 40.70 33.67	42.10 42.50 46.14	41.90 47.00 37.17	35.90 38.90 38.94	26.80 26.40 23.97	46.17 36.44 37.05	19.10 15.70 10.93	36.03 36.72 33.88
Central Maine Central Vermont Green Mountain	40.30 25.60	31.60 26.70	23.40 25.20	26.40 24.80	34.90 29.90	28.30 21.60	22.10 35.80	25.40 30.20	19.50 23.00	25.88 27.71
Maine Public Service Orange & Rockland Average (excluding Mass Electric)	17.49 <u>55.00</u> 43.67	33.52 23.00 30.70	29.64 40.00 32.94	32.70 48.41 37.58	44.15 18.00 36.15	30.14 50.00 34.83	25.75 33.00 27.69	26.51 <u>38.04</u> 34.26	28.44 <u>18.00</u> 19.24	30.02 <u>37.56</u> 32.54


- Focus closely on the definition of tracker and purported need which is often blurred and confused (i.e., replacement versus growth).
- Proposals with limited empirical support should be vigorously questioned.
- Comparative statistics (across time and comparable utilities) can be useful tool in evaluating capital tracker proposals.
- Important to focus on the outputs (reduced leakages, increased reliability) as well as the inputs (asset replacement). What are ratepayers getting for their support?
- No capital tracker should be approved without a clear asset development plan; timetable, benchmarks, development caps, and accountability.

Inflation Analysis

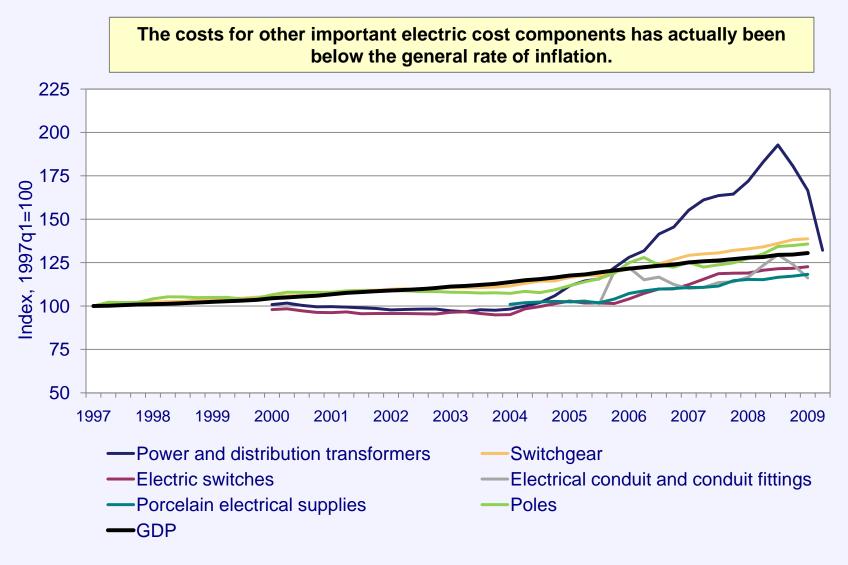


Price Indices for Steel and Metal Pipe, Pumps, Compressors, Meters and Plastic


Price Index for Natural Gas Distribution

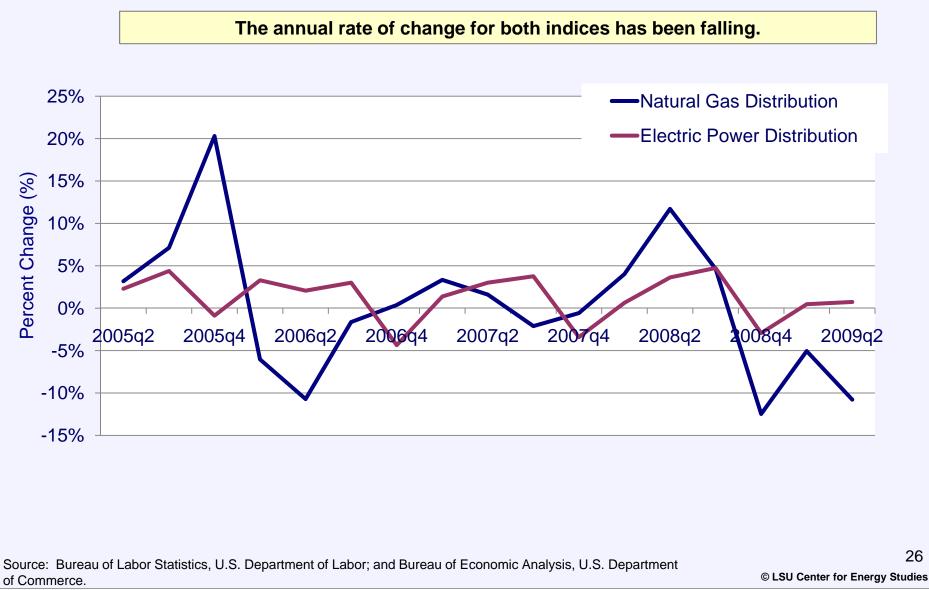
© LSU Center for Energy Studies

Price Indices for Electric Wire and Cable



Source: Bureau of Labor Statistics, U.S. Department of Labor; and Bureau of Economic Analysis, U.S. Department of Commerce.

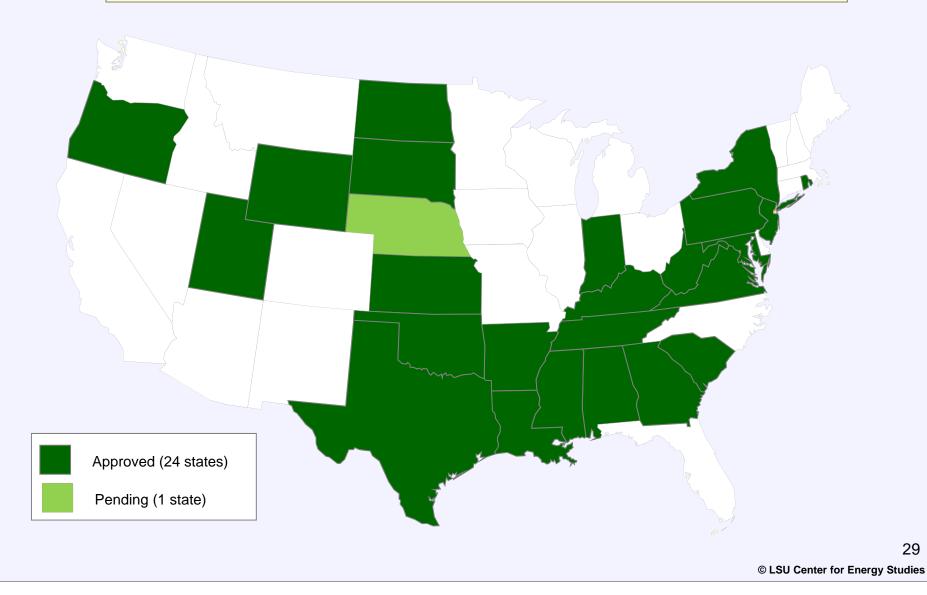
© LSU Center for Energy Studies


Price Indices for Other Electric Distribution Components

Source: Bureau of Labor Statistics, U.S. Department of Labor; and Bureau of Economic Analysis, U.S. Department of Commerce.

Annual Change in Natural Gas and **Electric Power Distribution Price Indices**

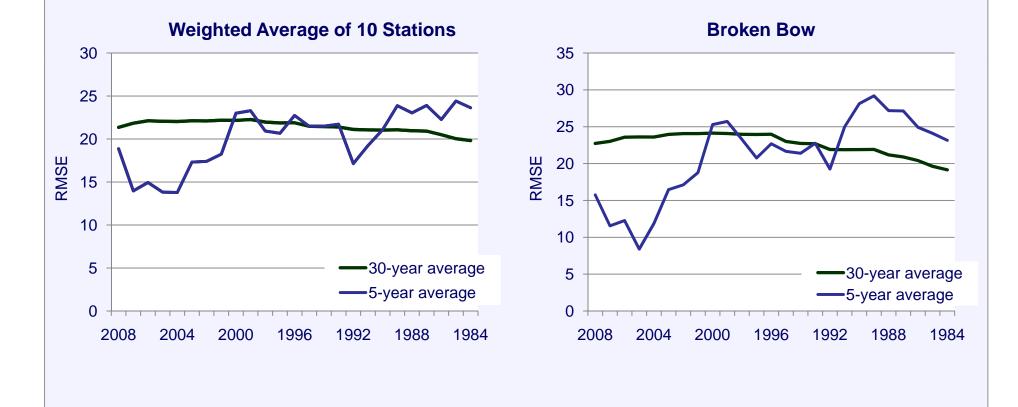
- Inflation allowances should be rejected out of hand. Entirely inconsistent with sound regulatory and economic principles.
- Proposals will do nothing but increase costs to ratepayers.
- Inflation adjustments should only be considered within the context of a PBR or other incentive/performance based mechanisms that offers benefits to customers.



Weather Adjustment Analysis

Weather Normalization Adjustment Mechanisms

SourceGas Distribution Difference Between Actual and Average HDDs


Total HDD - Actual Exceeds Average - HDD 1 Broken Bow (1,464) 4,294 3,671 2,877 1,716 694 2 Cambridge (720) 3,356 3,012 2,611 1,960 1,326 3 Hastings (5,508) (1,284) (1,415) (1,056) (936) (1,074) 4 Hay Springs (2,479) (493) (467) (507) (601) (682) 5 Kearney (7,060) (4,246) (4,050) (3,491) (3,151) (2,687) (1 6 Norfolk (11,008) (8,023) (7,203) (5,984) (4,841) (3,782) (2 7 North Platte (8,498) (6,374) (5,832) (4,957) (3,867) (2,787) (1 8 O'Neill (6,412) (633) (646) (540) (754) (818) 9 9 Scottsbluff (4,201) (936) (640) (419) (94) 297 <th>r 🗖</th> <th>[A]</th> <th>[B]</th> <th>[C]</th> <th>[D]</th> <th>[E]</th> <th>[F]</th> <th>[G]</th> <th>[H]</th>	r 🗖	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]
Total HDD - Actual Exceeds Average - HDD 1 Broken Bow (1,464) 4,294 3,671 2,877 1,716 694 2 Cambridge (720) 3,356 3,012 2,611 1,960 1,326 3 Hastings (5,508) (1,284) (1,415) (1,065) (936) (1,074) 4 Hay Springs (2,479) (493) (467) (507) (601) (682) 5 Kearney (7,060) (4,246) (4,050) (3,491) (3,151) (2,687) (1 6 Nortolk (11,008) (8,023) (7,203) (5,984) (4,841) (3,722) (3,867) (2,787) (1 9 Scottsbluff (4,241) (633) (644) (491) (94) 297 10 Sidney (760) (1,957) (3,052) (3,809) (4,013) (3,486) (2 11 All Stations Average % 166% 65% 69% 69% 69%	Line				Number	of Years Inc	luded in Ave	rage	
1 Broken Bow (1,464) 4,294 3,671 2,877 1,716 694 2 Cambridge (720) 3,356 3,012 2,611 1,960 1,326 3 Hastings (5,508) (1,284) (1,415) (1,056) (936) (1,074) 4 Hay Springs (2,479) (433) (467) (507) (601) (682) 5 Kearney (7,060) (4,246) (4,050) (3,491) (3,151) (2,687) (1 6 Norfolk (11,008) (8,023) (7,203) (5,984) (4,481) (3,782) (2,787) (1 8 O'Neill (6,412) (633) (646) (419) (94) 297 (10 Sidney (760) (1,957) (3,052) (3,809) (4,013) (3,486) (2 10 Sidney (760) (1,957) (3,052) (3,809) (4,013) (3,486) (2 11 All Stations Average % 36% 36% 44% 48% 52% 6 6 6	No.	Weather Station	NOAA	30	25	20	15	10	5
2 Cambridge (720) 3.366 3.012 2,611 1,960 1,326 3 Hastings (5,508) (1,224) (1,415) (1,056) (936) (1,074) 4 Hay Springs (2,479) (433) (467) (507) (601) (682) 5 Kearney (7,060) (4,246) (4,050) (3,491) (3,151) (2,687) (1 6 Nortolk (11,008) (8,023) (7,203) (5,5984) (4,841) (3,762) (2 7 North Platte (8,489) (6,374) (5,832) (4,4841) (3,762) (2,787) (1 8 O'Neill (4,201) (936) (640) (419) (94) 297 10 Sidney (760) (1,957) (3,052) (3,809) (4,045) (3,486) (2 11 All Stations Average (4,811) (1,622) (1,527) (1,458) (1,300) 12 % Improvement* 66% 65% 68% 76% 56% 56% 56% 56% 56%									
3 Hastings (5,506) (1,284) (1,415) (1,056) (936) (1,074) 4 Hay Springs (2,479) (433) (467) (507) (601) (682) 5 Kearney (7,060) (4,246) (4,050) (3,491) (3,151) (2,687) (1 6 Nortolk (11,008) (8,023) (7,203) (5,984) (4,841) (3,782) (2 7 North Platte (8,498) (6,374) (5,832) (4,957) (3,867) (2,787) (1 8 O'Neill (6,412) (633) (646) (419) (94) 297 10 Sidney (760) (1,957) (3,052) (3,809) (4,013) (3,486) (2 11 All Stations Average (4,811) (1,629) (1,622) (1,527) (1,458) (1,300) 12 % Improvement* 66% 65% 68% 70% 73% Percent of Years Actual Exceeds Average - % 13 Broken Bow 56% 36% 44% 64% <									1
4 Hay Springs (2,479) (493) (467) (507) (601) (682) 5 Kearney (7,060) (4,246) (4,050) (3,491) (3,151) (2,687) (1 6 Norfolk (11,008) (8,023) (7,203) (5,984) (4,841) (3,782) (2,787) (1 8 O'Neill (6,412) (633) (646) (44,01) (94) 297 10 Sidney (760) (1,957) (3,052) (3,809) (4,013) (3,486) (2 11 All Stations Average (4,811) (1,629) (1,662) (1,527) (1,458) (1,300) 12 % Improvement* 66% 65% 66% 70% 73% Percent of Years Actual Exceeds Average -% 13 Broken Bow 56% 36% 44% 48% 52% 14 Cambridge 52% 36% 36% 44% 64% 56% 56% 14 Cambridge 52% 36% 36% 46% 56% 56% <td< td=""><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>g</td></td<>		0							g
5 Kearney (7,060) (4,246) (4,050) (3,491) (3,151) (2,687) (1 6 Norfolk (11,008) (6,023) (7,203) (5,984) (4,841) (3,782) (2 7 North Platte (8,498) (6,374) (5,832) (4,957) (3,867) (2,787) (1 8 O'Neill (6,412) (936) (640) (419) (94) 297 10 Sidney (760) (1,957) (3,052) (3,809) (4,013) (3,486) (2 11 All Stations Average (4,811) (1,629) (1,652) (1,458) (1,300) 12 % Improvement* 66% 65% 66%	-		(, ,						(5
6 Norfolk (11,008) (8,023) (7,203) (5,984) (4,841) (3,782) (2 7 North Platte (8,498) (6,374) (5,832) (4,957) (3,867) (2,787) (1 8 O'Neill (6,412) (633) (646) (540) (754) (818) 9 Scottsbluff (4,201) (936) (640) (419) (94) 297 10 Sidney (760) (1,957) (3,052) (3,809) (4,013) (3,486) (2 11 All Stations Average (4,811) (1,622) (1,527) (1,458) (1,300) 12 % Improvement* 66% 68% 70% 73% 68% 14 Cambridge 52% 36% 36% 44% 48% 52% 66% 66% 66% 66% 66% 66% 66% 66% 66% 66% 66% 66% 66% 66% 66% 66% 66% 66% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(5</td>									(5
7 North Platte (8,498) (6,374) (5,832) (4,957) (3,867) (2,787) (1 8 O'Neill (6,412) (633) (646) (540) (754) (818) 9 Scottsbluff (4,201) (936) (640) (419) (94) 297 10 Sidney (760) (1,957) (3,052) (3,809) (4,013) (3,486) (2 11 All Stations Average (4,811) (1,629) (1,662) (1,527) (1,458) (1,300) 12 % Improvement* 66% 65% 68% 70% 73% Percent of Years Actual Exceeds Average - % 13 Broken Bow 56% 36% 44% 48% 48% 52% 15 Hastings 76% 60% 64% 64% 66% 56% 14 Cambridge 52% 36% 36% 64% 64% 64% 15 Hastings 76% 76% 76% 76% 72% 68% 16 Hay Springs		•							(1,7
8 O'Neill (6,412) (633) (646) (540) (754) (818) 9 Scottsbluff (4,201) (936) (640) (419) (94) 297 10 Sidney (760) (1,957) (3,052) (3,809) (4,013) (3,486) (2 11 All Stations Average (4,811) (1,629) (1,652) (1,527) (1,458) (1,300) 12 % Improvement* 66% 65% 68% 70% 73% Percent of Years Actual Exceeds Average - % 13 Broken Bow 56% 36% 44% 48% 48% 52% 14 Cambridge 52% 36% 36% 36% 64% 64% 66% 56% <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(2,2</td></td<>	-								(2,2
9 Scottsbluff (4,201) (936) (640) (419) (94) 297 10 Sidney (760) (1,957) (3,052) (3,809) (4,013) (3,486) (2 11 All Stations Average (4,811) (1,622) (1,527) (1,458) (1,300) 12 % Improvement* 66% 66% 68% 70% 73% Percent of Years Actual Exceeds Average - % 13 Broken Bow 56% 36% 36% 44% 48% 52% 14 Cambridge 52% 36% 36% 36% 48% 52% 15 Hastings 76% 60% 64% 64% 64% 64% 16 Hay Springs 60% 60% 72% 60% 60% 60% 60% 60% 60% 60% 56% 56% 60% 56% 60% 56% 60% 56% 56% 20 01% 56% 56% 56%	-			(, ,					(1,3
10 Sidney (760) (1,957) (3,052) (3,809) (4,013) (3,486) (2 11 All Stations Average (4,811) (1,629) (1,527) (1,458) (1,300) 12 % Improvement* 66% 65% 68% 70% 73% Percent of Years Actual Exceeds Average - % 13 Broken Bow 56% 36% 44% 48% 52% 14 Cambridge 52% 36% 36% 48% 52% 15 Hastings 76% 60% 64% 64% 66% 66% 16 Hay Springs 60% 60% 66%<	-			```	· · ·	``'			(2
11 All Stations Average (4,811) (1,62) (1,62) (1,527) (1,488) (1,300) 12 % Improvement* 66% 65% 68% 70% 73% Percent of Years Actual Exceeds Average - % 13 Broken Bow 56% 36% 44% 48% 48% 52% 14 Cambridge 52% 36% 36% 36% 44% 56% 56% 15 Hastings 76% 60% 64% 64% 56% 56% 16 Hay Springs 60% 60% 66% 64% 64% 64% 18 Norfolk 80% 76% 76% 72% 68% 64% 64% 64% 18 Norfolk 80% 72% 72% 60% 60% 56% 22% 60% 56% 56% 62% 60% 56% 56% 56% 56% 56% 56% 56% 56% 56% 56% 56% 56% 56% 56% 56% 56% 56% 56% 56% <td>-</td> <td></td> <td></td> <td>. ,</td> <td>. ,</td> <td></td> <td>• • •</td> <td></td> <td>3</td>	-			. ,	. ,		• • •		3
12 % Improvement* 66% 65% 68% 70% 73% Percent of Years Actual Exceeds Average - % 13 Broken Bow 56% 36% 44% 48% 48% 52% 14 Cambridge 52% 36% 36% 36% 48% 52% 15 Hastings 76% 60% 64% 64% 66% 56% 16 Hay Springs 60% 60% 66% 76% 60% 66% 66% 66% 16 Hay Springs 60% 72% 72% 68% 64% 65% 56% 56% 56% </td <td>10</td> <td>Sidney</td> <td>(760)</td> <td>(1,957)</td> <td>(3,052)</td> <td>(3,809)</td> <td>(4,013)</td> <td>(3,486)</td> <td>(2,</td>	10	Sidney	(760)	(1,957)	(3,052)	(3,809)	(4,013)	(3,486)	(2,
Percent of Year Actual Exceeds Average - % 13 Broken Bow 56% 36% 44% 48% 48% 52% 14 Cambridge 52% 36% 36% 36% 48% 52% 15 Hastings 76% 60% 64% 64% 56% 56% 16 Hay Springs 60% 60% 60% 66% 60% 60% 60% 17 Kearney 72% 72% 68% 64% 64% 64% 18 Norfolk 80% 72% 72% 60% 60% 52% 20 O'Neill 68% 56% 56% 52% 60% 56% 21 Scottsbluff 72% 56% 60% 56% 56% 56% 22 Sidney 52% 64% 68% 68% 72% 72% 23 All Stations Average 67% 59% 60% 58% 60% 59% 66%<	11	All Stations Average	(4,811)	(1,629)	(1,662)	(1,527)	(1,458)	(1,300)	(7
13 Broken Bow 56% 36% 44% 48% 48% 52% 14 Cambridge 52% 36% 36% 36% 36% 48% 52% 15 Hastings 76% 60% 64% 64% 56% 56% 16 Hay Springs 60% 60% 60% 66% 64% 64% 17 Kearney 72% 72% 68% 64% 64% 64% 18 Norfolk 80% 72% 72% 60% 60% 56% 20 O'Neill 68% 56% 56% 52% 60% 56% 21 Scottsbluff 72% 56% 60% 56% 56% 56% 22 Sidney 52% 64% 68% 68% 72% 72% 23 All Stations Average 67% 59% 60% 58% 60% 59% 24 Broken Bow 14 9 11 12 12 13 25 Cambridge 13 <td< td=""><td>12</td><td>% Improvement*</td><td></td><td>66%</td><td>65%</td><td>68%</td><td>70%</td><td>73%</td><td>8</td></td<>	12	% Improvement*		66%	65%	68%	70%	73%	8
14 Cambridge 52% 36% 36% 36% 48% 52% 15 Hastings 76% 60% 64% 64% 56% 56% 16 Hay Springs 60% 60% 60% 60% 60% 60% 60% 60% 17 Kearney 72% 72% 68% 64% 64% 64% 18 Norfolk 80% 76% 76% 76% 60% 60% 52% 20 O'Neill 68% 56% 56% 52% 60% 56% 52% 21 Scottsbluff 72% 56% 60% 56% 56% 52% 23 All Stations Average 67% 59% 60% 58% 60% 59% 60% 59% 60% 59% 60% 59% 60% 59% 60% 59% 60% 59% 60% 59% 60% 59% 60% 59% 60% 59% 60% 59% 60% 59% 60% 50% 60% 50% 60%			-						
15 Hastings 76% 60% 64% 64% 56% 56% 16 Hay Springs 60% 60% 60% 60% 60% 60% 60% 17 Kearney 72% 72% 68% 64% 64% 64% 18 Norfolk 80% 76% 76% 76% 72% 68% 19 North Platte 80% 72% 72% 60% 60% 56% 20 O'Neill 68% 56% 56% 52% 60% 56% 21 Scottsbluff 72% 56% 60% 56% 56% 56% 22 Sidney 52% 64% 68% 68% 72% 72% 23 All Stations Average 67% 59% 60% 58% 60% 59% 24 Broken Bow 14 9 11 12 12 13 25 Cambridge 13 9 9 9 12 13 26 Hastings 19 15	-								4
16 Hay Springs 60% 60% 60% 56% 60% 60% 17 Kearney 72% 72% 68% 64% 64% 64% 18 Norfolk 80% 76% 76% 76% 72% 68% 19 North Platte 80% 72% 72% 60% 60% 52% 20 O'Neill 68% 56% 56% 52% 60% 56% 21 Scottsbluff 72% 56% 60% 56% 56% 56% 22 Sidney 52% 64% 68% 68% 72% 72% 23 All Stations Average 67% 59% 60% 58% 60% 59% 24 Broken Bow 14 9 11 12 12 13 25 Cambridge 13 9 9 9 12 13 26 Hastings 15 15 15 14<									4
17 Kearney 72% 72% 68% 64% 64% 64% 18 Norfolk 80% 76% 76% 72% 68% 19 North Platte 80% 72% 72% 60% 60% 52% 20 O'Neill 68% 56% 56% 52% 60% 56% 21 Scottsbluff 72% 56% 60% 56% 56% 56% 22 Sidney 52% 64% 68% 68% 72% 72% 23 All Stations Average 67% 59% 60% 58% 60% 59% 24 Broken Bow 14 9 11 12 12 13 25 Cambridge 13 9 9 9 12 13 26 Hastings 19 15 16 16 14 14 27 Hay Springs 15 15 14 15 15 28 Kearney 18 18 17 16 16 16 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ę</td>	-								Ę
18 Norfolk 80% 76% 76% 76% 72% 68% 19 North Platte 80% 72% 72% 60% 60% 52% 20 O'Neill 68% 56% 56% 52% 60% 56% 21 Scottsbluff 72% 56% 60% 56% 56% 56% 22 Sidney 52% 64% 68% 68% 72% 72% 23 All Stations Average 67% 59% 60% 58% 60% 59% 23 All Stations Average 67% 59% 60% 58% 60% 59% 23 All Stations Average 67% 59% 60% 58% 60% 59% 24 Broken Bow 14 9 11 12 12 13 25 Cambridge 13 9 9 9 12 13 26 Hastings 19 15 1									į
19North Platte80%72%72%60%60%52%20O'Neill68%56%56%56%56%56%21Scottsbluff72%56%60%56%56%56%22Sidney52%64%68%68%72%72%23All Stations Average67%59%60%58%60%59%59%Number of Years Actual Exceeds Average24Broken Bow1491112121325Cambridge13999121326Hastings19151616141427Hay Springs151514151528Kearney18181716161629Norfolk20191919181730North Platte20181815151331O'Neill17141413151432Scottsbluff181415141414									6
20O'Neill68%56%56%52%60%56%21Scottsbluff72%56%60%56%56%56%22Sidney52%64%68%68%72%72%23All Stations Average67%59%60%58%60%59%Number of Years Actual Exceeds Average24Broken Bow1491112121325Cambridge13999121326Hastings19151616141427Hay Springs151514151528Kearney18181716161629Norfolk20191919181730North Platte20181815151431O'Neill17141413151432Scottsbluff181415141414									6
21Scottsbluff72%56%66%56%56%56%22Sidney52%64%68%68%72%72%23All Stations Average67%59%60%58%60%59%Number of Years Actual Exceeds Average24Broken Bow1491112121325Cambridge13999121326Hastings19151616141427Hay Springs15151514151528Kearney1818171616161629Norfolk201919191817301315141433151431O'Neill171414141414141414141414141432Scottsbluff1814151414141414141414	-								Ę
22Sidney52%64%68%68%72%72%23All Stations Average67%59%60%58%60%59%Number of Years Actual Exceeds Average24Broken Bow1491112121325Cambridge13999121326Hastings19151616141427Hay Springs15151514151528Kearney18181716161629Norfolk20191919181730North Platte20181815151431O'Neill17141414141432Scottsbluff181415141414									4
23All Stations Average67%59%60%58%60%59%Number of Years Actual Exceeds Average24Broken Bow1491112121325Cambridge13999121326Hastings19151616141427Hay Springs15151514151528Kearney18181716161629Norfolk20191919181730North Platte20181815151331O'Neill17141413151432Scottsbluff181415141414									į
Number of Years Actual Exceeds Average 24 Broken Bow 14 9 11 12 12 13 25 Cambridge 13 9 9 9 12 13 26 Hastings 19 15 16 16 14 14 27 Hay Springs 15 15 15 14 15 15 28 Kearney 18 18 17 16 16 16 29 Norfolk 20 19 19 19 18 17 30 North Platte 20 18 18 15 15 13 31 O'Neill 17 14 14 13 15 14 32 Scottsbluff 18 14 15 14 14 14	22	Sidney							7
24Broken Bow1491112121325Cambridge13999121326Hastings19151616141427Hay Springs15151514151528Kearney18181716161629Norfolk20191919181730North Platte20181815151331O'Neill17141413151432Scottsbluff181415141414	-	•		59%	60%	58%	60%	59%	į
25Cambridge13999121326Hastings19151616141427Hay Springs15151514151528Kearney18181716161629Norfolk20191919181730North Platte20181815151331O'Neill17141413151432Scottsbluff181415141414			•			10	10	10	
26Hastings19151616141427Hay Springs15151514151528Kearney18181716161629Norfolk20191919181730North Platte20181815151331O'Neill17141413151432Scottsbluff181415141414									
27Hay Springs15151514151528Kearney18181716161629Norfolk20191919181730North Platte20181815151331O'Neill17141413151432Scottsbluff1814151414	-	5		-					
28Kearney18181716161629Norfolk20191919181730North Platte20181815151331O'Neill17141413151432Scottsbluff181415141414									
29Norfolk20191919181730North Platte20181815151331O'Neill17141413151432Scottsbluff181415141414									
30North Platte201818151331O'Neill17141413151432Scottsbluff181415141414		-	-			-			
31O'Neill17141413151432Scottsbluff181415141414									
32 Scottsbluff 18 14 15 14 14 14									
33 Sidney 13 16 17 17 18 18									
	33	Sidney	13	16	17	17	18	18	

30

© LSU Center for Energy Studies

A comparison of the RMSE shows that the 30-year average is more stable and robust than those estimated for a proposed-five year weighted average normalization period.

Southern Connecticut Gas ROE Comparison (With and Without WNA)

Year	Percent ROE with WNA	Percent ROE without WNA	Difference
1994	11.97%	12.05%	0.08%
1995	11.34%	9.79%	-1.55%
1996	12.38%	13.52%	1.14%
1997	12.35%	11.71%	-0.64%
1998	11.53%	8.19%	-3.34%
1999	12.46%	10.48%	-1.98%
2000	12.74%	12.28%	-0.46%
2001	15.05%	13.80%	-1.25%
2002	8.49%	6.40%	-2.09%
2003	10.44%	11.57%	1.13%
2004	10.84%	10.45%	-0.39%
2005	7.42%	7.05%	-0.37%
2006	7.04%	5.13%	-1.91%
2007	11.93%	10.98%	-0.95%
2008	11.27%	9.84%	-1.43%
Average	11.15%	10.22%	-0.93%

Connecticut DPUC found that SCG's WNA had not equally benefited ratepayers and the Company.

During the time SCG's WNA was in place, SCG received a total of \$43.6 million in net WNA revenue.

Ratepayers benefited in only three of the 15-plus years. Further, the Company's ROE benefited significantly.

The average ROE with the WNA was 11.15% versus 10.22% without a WNA, an increase of 93 basis points.

Source: Application of the Southern Connecticut Gas Company for a rate increase. Connecticut Department of Public Utility Control. © LSU Center for Energy Studies

- Utilities are asking for free weather derivative and should be asked to pay, or at least share in the cost of this instrument.
- These mechanism are likely to not be symmetrical in the "expected utility" received by the contracting parties.
- In other words, the expected (dis)utility of weather-related revenue losses to the utility are not likely to be the same as the expected utility of foregone rate decreases, and vice versa, even if HDDs are equally balanced.

Questions, Comments, & Discussion

Center for Energy Studies

www.enrg.lsu.edu

dismukes@lsu.edu